3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics

Hyogeun Shin, Sohyeon Jeong, Ju Hyun Lee, Woong Sun, Nakwon Choi, Il Joo Cho

Research output: Contribution to journalArticlepeer-review

113 Citations (Scopus)

Abstract

Investigation of neural circuit dynamics is crucial for deciphering the functional connections among regions of the brain and understanding the mechanism of brain dysfunction. Despite the advancements of neural circuit models in vitro, technologies for both precisely monitoring and modulating neural activities within three-dimensional (3D) neural circuit models have yet to be developed. Specifically, no existing 3D microelectrode arrays (MEAs) have integrated capabilities to stimulate surrounding neurons and to monitor the temporal evolution of the formation of a neural network in real time. Herein, we present a 3D high-density multifunctional MEA with optical stimulation and drug delivery for investigating neural circuit dynamics within engineered 3D neural tissues. We demonstrate precise measurements of synaptic latencies in 3D neural networks. We expect our 3D multifunctional MEA to open up opportunities for studies of neural circuits through precise, in vitro investigations of neural circuit dynamics with 3D brain models.

Original languageEnglish
Article number492
JournalNature communications
Volume12
Issue number1
DOIs
Publication statusPublished - 2021 Dec 1

Bibliographical note

Funding Information:
This research was supported by the Brain Convergence Research Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (NRF-2019M3E5D2A01063814), Bio and Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (NRF-2017M3A9B3061319), the Brain Research Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (NRF-2017M3C7A1028854), and Korea Institute of Science and Technology (KIST) intramural grant (2E30080, MI).

Publisher Copyright:
© 2021, The Author(s).

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of '3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics'. Together they form a unique fingerprint.

Cite this