A 0.15V-input energy-harvesting charge pump with switching body biasing and adaptive dead-time for efficiency improvement

Jungmoon Kim, Philip K.T. Mok, Chulwoo Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

32 Citations (Scopus)

Abstract

Design of low-voltage and efficient energy-harvesting circuits is becoming increasingly important, particularly, for autonomous systems. Since the amount of energy that can be harvested from the surrounding environment is limited, the available output voltage of a harvester is low. Therefore, the design of a low-input-voltage (low-VIN) up-converter is critical to self-powered systems [1-3]. Moreover, the form factor is very constrained in applications such as wearable electronic devices and sensor networks. Recently, low-V IN charge pumps (CPs) for energy harvesting has been compared with DC-DC converters using a large inductor [1-3]. CPs introduced in [1] and [2] use the advanced process technology to push VIN down to the subthreshold region. The CP in [1] introduces a forward-body-biasing (FBB) technique, which improves the voltage conversion efficiency (VCE) for low VIN but shows poor power conversion efficiency (PCE). The CP in [2] achieves the lowest operation voltage. However, the design with a 10-stage CP provides low output power. This paper presents a CP with switching-body-biasing (SBB), adaptive-dead-time (AD), and switch-conductance (SW-G) enhancement techniques to improve the PCE for low VIN as well as to extend the maximum load current.

Original languageEnglish
Title of host publication2014 IEEE International Solid-State Circuits Conference, ISSCC 2014 - Digest of Technical Papers
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages394-395
Number of pages2
ISBN (Print)9781479909186
DOIs
Publication statusPublished - 2014
Event2014 61st IEEE International Solid-State Circuits Conference, ISSCC 2014 - San Francisco, CA, United States
Duration: 2014 Feb 92014 Feb 13

Publication series

NameDigest of Technical Papers - IEEE International Solid-State Circuits Conference
Volume57
ISSN (Print)0193-6530

Other

Other2014 61st IEEE International Solid-State Circuits Conference, ISSCC 2014
Country/TerritoryUnited States
CitySan Francisco, CA
Period14/2/914/2/13

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A 0.15V-input energy-harvesting charge pump with switching body biasing and adaptive dead-time for efficiency improvement'. Together they form a unique fingerprint.

Cite this