A benchmark study on the thermal conductivity of nanofluids

Jacopo Buongiorno, David C. Venerus, Naveen Prabhat, Thomas McKrell, Jessica Townsend, Rebecca Christianson, Yuriy V. Tolmachev, Pawel Keblinski, Lin Wen Hu, Jorge L. Alvarado, In Cheol Bang, Sandra W. Bishnoi, Marco Bonetti, Frank Botz, Anselmo Cecere, Yun Chang, Gang Chen, Haisheng Chen, Sung Jae Chung, Minking K. ChyuSarit K. Das, Roberto Di Paola, Yulong Ding, Frank Dubois, Grzegorz Dzido, Jacob Eapen, Werner Escher, Denis Funfschilling, Quentin Galand, Jinwei Gao, Patricia E. Gharagozloo, Kenneth E. Goodson, Jorge Gustavo Gutierrez, Haiping Hong, Mark Horton, Kyo Sik Hwang, Carlo S. Iorio, Seok Pil Jang, Andrzej B. Jarzebski, Yiran Jiang, Liwen Jin, Stephan Kabelac, Aravind Kamath, Mark A. Kedzierski, Lim Geok Kieng, Chongyoup Kim, Ji Hyun Kim, Seokwon Kim, Seung Hyun Lee, Kai Choong Leong, Indranil Manna, Bruno Michel, Rui Ni, Hrishikesh E. Patel, John Philip, Dimos Poulikakos, Cecile Reynaud, Raffaele Savino, Pawan K. Singh, Pengxiang Song, Thirumalachari Sundararajan, Elena Timofeeva, Todd Tritcak, Aleksandr N. Turanov, Stefan Van Vaerenbergh, Dongsheng Wen, Sanjeeva Witharana, Chun Yang, Wei Hsun Yeh, Xiao Zheng Zhao, Sheng Qi Zhou

Research output: Contribution to journalArticlepeer-review

1074 Citations (Scopus)


This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids," was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio, as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however, such differences tend to disappear when the data are normalized to the measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by Nan [J. Appl. Phys. 81, 6692 (1997)], was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise.

Original languageEnglish
Article number094312
JournalJournal of Applied Physics
Issue number9
Publication statusPublished - 2009

Bibliographical note

Funding Information:
This work was made possible by the support of the National Science Foundation under Grant No. CBET-0812804. The authors are also grateful to Sasol and W. R. Grace & Co. for donating some of the samples used in INPBE. Special thanks to Mr. Edmund Carlevale of MIT for creating and maintaining the INPBE website.

ASJC Scopus subject areas

  • General Physics and Astronomy


Dive into the research topics of 'A benchmark study on the thermal conductivity of nanofluids'. Together they form a unique fingerprint.

Cite this