A comparison of scale estimation schemes for a quadrotor UAV based on optical flow and IMU measurements

Volker Grabe, Heinrich H. Bulthoff, Paolo Robuffo Giordano

Research output: Chapter in Book/Report/Conference proceedingConference contribution

33 Citations (Scopus)

Abstract

For the purpose of autonomous UAV flight control, cameras are ubiquitously exploited as a cheap and effective onboard sensor for obtaining non-metric position or velocity measurements. Since the metric scale cannot be directly recovered from visual input only, several methods have been proposed in the recent literature to overcome this limitation by exploiting independent 'metric' information from additional onboard sensors. The flexibility of most approaches is, however, often limited by the need of constantly tracking over time a certain set of features in the environment, thus potentially suffering from possible occlusions or loss of tracking during flight. In this respect, in this paper we address the problem of estimating the scale of the observed linear velocity in the UAV body frame from direct measurement of the instantaneous (and non-metric) optical flow, and the integration of an onboard Inertial Measurement Unit (IMU) for providing (metric) acceleration readings. To this end, two different estimation techniques are developed and critically compared: a standard Extended Kalman Filter (EKF) and a novel nonlinear observer stemming from the adaptive control literature. Results based on simulated and real data recorded during a quadrotor UAV flight demonstrate the effectiveness of the approach.

Original languageEnglish
Title of host publicationIROS 2013
Subtitle of host publicationNew Horizon, Conference Digest - 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
Pages5193-5200
Number of pages8
DOIs
Publication statusPublished - 2013
Event2013 26th IEEE/RSJ International Conference on Intelligent Robots and Systems: New Horizon, IROS 2013 - Tokyo, Japan
Duration: 2013 Nov 32013 Nov 8

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Other

Other2013 26th IEEE/RSJ International Conference on Intelligent Robots and Systems: New Horizon, IROS 2013
Country/TerritoryJapan
CityTokyo
Period13/11/313/11/8

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'A comparison of scale estimation schemes for a quadrotor UAV based on optical flow and IMU measurements'. Together they form a unique fingerprint.

Cite this