A conductive porous organic polymer with superprotonic conductivity of a Nafion-type electrolyte

Dong Won Kang, Jeong Hwa Song, Kyung Jin Lee, Han Geul Lee, Jeong Eun Kim, Hwa Young Lee, Jin Young Kim, Chang Seop Hong

Research output: Contribution to journalArticlepeer-review

32 Citations (Scopus)


As potential solid electrolytes in fuel cells, porous organic polymers show compelling proton conductivities (up to ∼10-2 S cm-1), but even higher performance is required for real applications. In this work, we prepared a biphenyl-based organic polymeric framework of 1E with a larger surface area as an extended version of a phenyl-based polymer. The construction of the framework from C-C covalent bonds allows exceptional stability to be realized under the operating conditions of fuel cells. Successful post-synthetic modification of 1E afforded the sulfonated material 1ES. Notably, the conductivity of 1ES was ∼104 orders of magnitude greater than that of 1E at 30 °C and 90% relative humidity (RH). The conductivity of 1ES reached 1.59 × 10-1 S cm-1 at 80 °C and 90% RH, which is superior to those observed for any porous organic polymer conductors reported so far and even surpasses that of Nafion. This polymer, simply prepared and scalable for mass production, was stable at 80 °C and 90% RH for more than 4 months without conductivity loss.

Original languageEnglish
Pages (from-to)17492-17498
Number of pages7
JournalJournal of Materials Chemistry A
Issue number33
Publication statusPublished - 2017

ASJC Scopus subject areas

  • Chemistry(all)
  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)


Dive into the research topics of 'A conductive porous organic polymer with superprotonic conductivity of a Nafion-type electrolyte'. Together they form a unique fingerprint.

Cite this