A Critical Review on Thin-Film Nanocomposite Membranes with Interlayered Structure: Mechanisms, Recent Developments, and Environmental Applications

Zhe Yang, Peng Fei Sun, Xianhui Li, Bowen Gan, Li Wang, Xiaoxiao Song, Hee Deung Park, Chuyang Y. Tang

Research output: Contribution to journalReview articlepeer-review

372 Citations (Scopus)

Abstract

The separation properties of polyamide reverse osmosis and nanofiltration membranes, widely applied for desalination and water reuse, are constrained by the permeability-selectivity upper bound. Although thin-film nanocomposite (TFN) membranes incorporating nanomaterials exhibit enhanced water permeance, their rejection is only moderately improved or even impaired due to agglomeration of nanomaterials and formation of defects. A novel type of TFN membranes featuring an interlayer of nanomaterials (TFNi) has emerged in recent years. These novel TFNi membranes show extraordinary improvement in water flux (e.g., up to an order of magnitude enhancement) along with better selectivity. Such enhancements can be achieved by a wide selection of nanomaterials, ranging from nanoparticles, one-/two-dimensional materials, to interfacial coatings. The use of nanostructured interlayers not only improves the formation of polyamide rejection layers but also provides an optimized water transport path, which enables TFNi membranes to potentially overcome the longstanding trade-off between membrane permeability and selectivity. Furthermore, TFNi membranes can potentially enhance the removal of heavy metals and micropollutants, which is critical for many environmental applications. This review critically examines the recent developments of TFNi membranes and discusses the underlying mechanisms and design criteria. Their potential environmental applications are also highlighted.

Original languageEnglish
Pages (from-to)15563-15583
Number of pages21
JournalEnvironmental Science and Technology
Volume54
Issue number24
DOIs
Publication statusPublished - 2020 Dec 15

Bibliographical note

Publisher Copyright:
© 2020 American Chemical Society.

ASJC Scopus subject areas

  • General Chemistry
  • Environmental Chemistry

Fingerprint

Dive into the research topics of 'A Critical Review on Thin-Film Nanocomposite Membranes with Interlayered Structure: Mechanisms, Recent Developments, and Environmental Applications'. Together they form a unique fingerprint.

Cite this