a-InGaZnO Thin-Film Transistors With Novel Atomic Layer-Deposited HfO2Gate Insulator Using Two Types of Reactant Gases

Kang Min Lee, Byeong Kwon Ju, Sung Hwan Choi

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Plasma-enhanced chemical vapor deposition is often utilized to fabricate amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) with mobility of approximately 7 cm2/(V s) using a SiOx gate insulator. For use in high-resolution organic light-emitting diode displays, this value must be markedly improved. Therefore, we used various reactants to create a HfO2 bilayer via atomic layer deposition (ALD) and examined the electrical properties of IGZO TFTs, such as their mobility and subthreshold swing (SS). By adjusting the thickness of HfO2 with H2O reactant gas, the amount of hydrogen that diffused into the IGZO channel was controlled. The IGZO TFT with a specific HfO2 bilayer gate insulator exhibited high saturation mobility of 16.75 cm2/(V s) and an improved SS of 159 mV/dec compared to a conventional device with a HfO2 gate insulator formed using only O3 reactant gas. Furthermore, the fabricated HfO2 bilayer devices presented excellent reliability under positive bias stress and were more robust against the short-channel effect. Thus, based on the findings of this study, to improve the electrical properties of a-IGZO TFTs, the ALD process is suggested to be used to deposit a high- k gate insulator.

Original languageEnglish
Pages (from-to)127-134
Number of pages8
JournalIEEE Transactions on Electron Devices
Volume70
Issue number1
DOIs
Publication statusPublished - 2023 Jan 1

Bibliographical note

Funding Information:
This work was supported in part by the Korea Institute of Industrial Technology (Development of quantum dot-based sensor material and component technology for eye-safe Lidar system, 1711175108, KITECH EM-22- 0002) and in part by the Industry Technology Research and Development Program (20016051, Development of oxide TFTs with short channel for the mobile AMOLED) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea)

Publisher Copyright:
© 1963-2012 IEEE.

Keywords

  • Atomic-layer deposition (ALD)
  • HO reactants
  • HfO
  • hydrogen
  • In-Ga-Zn-O(IGZO)
  • O
  • thin-film transistor (TFT)

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'a-InGaZnO Thin-Film Transistors With Novel Atomic Layer-Deposited HfO2Gate Insulator Using Two Types of Reactant Gases'. Together they form a unique fingerprint.

Cite this