A Mediator-Free Multi-Ply Biofuel Cell Using an Interfacial Assembly between Hydrophilic Enzymes and Hydrophobic Conductive Oxide Nanoparticles with Pointed Apexes

Minchul Kang, Donghyeon Nam, Jeongyeon Ahn, Yoon Jang Chung, Seung Woo Lee, Young Bong Choi, Cheong Hoon Kwon, Jinhan Cho

Research output: Contribution to journalArticlepeer-review

Abstract

Biofuel cells (BFCs) based on enzymatic electrodes hold great promise as power sources for biomedical devices. However, their practical use is hindered by low electron transfer efficiency and poor operational stability of enzymatic electrodes. Here, a novel mediator-free multi-ply BFC that overcomes these limitations and exhibits both substantially high-power output and long-term operational stability is presented. The approach involves the utilization of interfacial interaction-induced assembly between hydrophilic glucose oxidase (GOx) and hydrophobic conductive indium tin oxide nanoparticles (ITO NPs) with distinctive shapes, along with a multi-ply electrode system. For the preparation of the anode, GOx and oleylamine-stabilized ITO NPs with bipod/tripod type are covalently assembled onto the host fiber electrode composed of multi-walled carbon nanotubes and gold (Au) NPs. Remarkably, despite the contrasting hydrophilic and hydrophobic properties, this interfacial assembly approach allows for the formation of nanoblended GOx/ITO NP film, enabling efficient electron transfer within the anode. Additionally, the cathode is prepared by sputtering Pt onto the host electrode. Furthermore, the multi-ply fiber electrode system exhibits unprecedented high-power output (≈10.4 mW cm−2) and excellent operational stability (2.1 mW cm−2, ≈49% after 60 days of continuous operation). The approach can provide a basis for the development of high-performance BFCs.

Original languageEnglish
Article number2304986
JournalAdvanced Materials
Volume35
Issue number51
DOIs
Publication statusPublished - 2023 Dec 21

Bibliographical note

Publisher Copyright:
© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Keywords

  • a mediator-free biofuel cell
  • a multi-ply electrode
  • conductive oxide nanoparticles
  • enzymes

ASJC Scopus subject areas

  • General Materials Science
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'A Mediator-Free Multi-Ply Biofuel Cell Using an Interfacial Assembly between Hydrophilic Enzymes and Hydrophobic Conductive Oxide Nanoparticles with Pointed Apexes'. Together they form a unique fingerprint.

Cite this