Abstract
Nanostructured, multicomponent metal sulfides have recently attracted much attention as anode materials for high-performance sodium ion batteries (SIBs). Therefore, a simple strategy for constructing rationally designed multicomponent metal sulfide-based nanostructures is needed. Herein, we propose a metal-organic framework-based (MOF) strategy to construct human backbone-like CoMoS3 nanostructures with multiple voids as high-performance SIB anodes. This strategy involves conformal coating of a Co-based MOF onto the surface of MoO3 nanobelts, followed by sulfidation of the hybrids. We explore not only the optimized conditions for uniform ZIF-67 coating on the MoO3 nanobelts, but also the transformation mechanism of the MoO3@ZIF-67 hybrids into CoMoS3 nanobackbones with multiple voids. To further improve the structural stability, the nanobackbones were coated with polydopamine and then thermally treated under inert conditions, resulting in the formation of CoMoS3@N-doped carbon (NC) nanobackbones. Benefiting from their unique structural design, conductive carbon shells, and synergistic effects between multiple components, the CoMoS3@NC nanobackbones exhibit enhanced electrochemical performance when tested as anode materials for SIBs. They deliver a reversible capacity of 411 mA h g-1 for 300 cycles at a current density of 2 A g-1, and an excellent rate performance of 349 mA h g-1 at a current density of 10 A g-1. This simple strategy can be used to fabricate other multicomponent metal sulfide/carbon composites with multiple voids, which can be used for various applications.
Original language | English |
---|---|
Pages (from-to) | 13751-13761 |
Number of pages | 11 |
Journal | Journal of Materials Chemistry A |
Volume | 7 |
Issue number | 22 |
DOIs | |
Publication status | Published - 2019 |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2017R1A2B2008592 and 2017R1D1A1B03034473).
Publisher Copyright:
© 2019 The Royal Society of Chemistry.
ASJC Scopus subject areas
- General Chemistry
- Renewable Energy, Sustainability and the Environment
- General Materials Science