TY - JOUR
T1 - A novel approach to preparing nano-size Co3O4-coated Ni powder by the Pechini method for MCFC cathodes
AU - Lee, Hyunsuk
AU - Hong, Mingzi
AU - Bae, Seungchul
AU - Lee, Heungchan
AU - Park, Eunjoo
AU - Kim, Keon
PY - 2003/10
Y1 - 2003/10
N2 - The dissolution of nickel oxide cathodes in the electrolyte is one of the major technical obstacles to the commercialization of molten carbonate fuel cells (MCFC). A novel alternative cathode material for MCFC was synthesized, which was made of nano-size Co3O4 coated on the surface of Ni powder using a polymeric precursor based on the Pechini method. X-Ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDAX), electron microprobe analysis (EPMA), and Raman spectrometry were employed in characterization of the novel alternative cathode materials. The Co-coated Ni cathode prepared by the tape-casting technique has a lower solubility in the molten carbonate than in the NiO cathode under CO 2 : O2 (67 : 33) atmosphere at 650°C. The reason is that the nano-size Co3O4-coated Ni powder can significantly retard the dissolution of NiO in molten carbonate due to the formation of the stable LiCO1-yNiyO2 phase on the surface of NiO in molten carbonate. During 300 h cell operation, the closed-circuit voltage (CCV) of unit cells using NiO and Co-coated Ni cathodes were found to be 0.80 V and 0.82 V, respectively, at a current density of 150 mA cm-2. The results show that the Co-coated Ni cathode used as an alternative cathode could resolve the problems in scale-up of the electrode and lengthen the lifetime of MCFC.
AB - The dissolution of nickel oxide cathodes in the electrolyte is one of the major technical obstacles to the commercialization of molten carbonate fuel cells (MCFC). A novel alternative cathode material for MCFC was synthesized, which was made of nano-size Co3O4 coated on the surface of Ni powder using a polymeric precursor based on the Pechini method. X-Ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDAX), electron microprobe analysis (EPMA), and Raman spectrometry were employed in characterization of the novel alternative cathode materials. The Co-coated Ni cathode prepared by the tape-casting technique has a lower solubility in the molten carbonate than in the NiO cathode under CO 2 : O2 (67 : 33) atmosphere at 650°C. The reason is that the nano-size Co3O4-coated Ni powder can significantly retard the dissolution of NiO in molten carbonate due to the formation of the stable LiCO1-yNiyO2 phase on the surface of NiO in molten carbonate. During 300 h cell operation, the closed-circuit voltage (CCV) of unit cells using NiO and Co-coated Ni cathodes were found to be 0.80 V and 0.82 V, respectively, at a current density of 150 mA cm-2. The results show that the Co-coated Ni cathode used as an alternative cathode could resolve the problems in scale-up of the electrode and lengthen the lifetime of MCFC.
UR - http://www.scopus.com/inward/record.url?scp=0142042524&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0142042524&partnerID=8YFLogxK
U2 - 10.1039/b303980c
DO - 10.1039/b303980c
M3 - Article
AN - SCOPUS:0142042524
SN - 0959-9428
VL - 13
SP - 2626
EP - 2632
JO - Journal of Materials Chemistry
JF - Journal of Materials Chemistry
IS - 10
ER -