TY - GEN
T1 - A peak detection in noisy spectrum using principal component analysis
AU - Min, Eungi
AU - Ko, Mincheol
AU - Kim, Yongkwon
AU - Joung, Jinhun
AU - Lee, Kisung
PY - 2012
Y1 - 2012
N2 - A spectrum of a radio isotope (RI) contains a single or multiple photo-peaks and radio-activities of all energy levels. These characteristics of each RI source are measured by radiation monitor (RM) systems. However, if the radiation count is extremely low and source to detector distance is too far, we cannot acquire good spectroscopic results for RI identification by RM devices while we still able to measure some counting statistics. Thus, precise peak detection in noisy spectrums is one of the most important tasks in the RM system. In this study, we developed an accurate peak detection method based on wavelet decomposition followed by principal component analysis. We used a discrete wavelet transform (DWT) for reduction of unnecessary high frequency noises in low counts spectrums. To reduce effect of a background radiation, we made a background template using a pre-measured background spectrum and calculated square errors for suppressing a background of low energy levels and maintaining true photo-peaks. Finally, we analyzed pre-processed data and detected photo-peaks using PCA. We measured Cesium 137(Cs-137) and Barium 133(Ba-133) with 1 and 10 micro curies collected from the various distance. Each spectrum was collected for a second and total 60 sets were stored for each isotope. Results of our research show that the proposed algorithm achieves high sensitivity and specificity, proving that the algorithm is appropriate for RM systems.
AB - A spectrum of a radio isotope (RI) contains a single or multiple photo-peaks and radio-activities of all energy levels. These characteristics of each RI source are measured by radiation monitor (RM) systems. However, if the radiation count is extremely low and source to detector distance is too far, we cannot acquire good spectroscopic results for RI identification by RM devices while we still able to measure some counting statistics. Thus, precise peak detection in noisy spectrums is one of the most important tasks in the RM system. In this study, we developed an accurate peak detection method based on wavelet decomposition followed by principal component analysis. We used a discrete wavelet transform (DWT) for reduction of unnecessary high frequency noises in low counts spectrums. To reduce effect of a background radiation, we made a background template using a pre-measured background spectrum and calculated square errors for suppressing a background of low energy levels and maintaining true photo-peaks. Finally, we analyzed pre-processed data and detected photo-peaks using PCA. We measured Cesium 137(Cs-137) and Barium 133(Ba-133) with 1 and 10 micro curies collected from the various distance. Each spectrum was collected for a second and total 60 sets were stored for each isotope. Results of our research show that the proposed algorithm achieves high sensitivity and specificity, proving that the algorithm is appropriate for RM systems.
UR - http://www.scopus.com/inward/record.url?scp=84881594922&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84881594922&partnerID=8YFLogxK
U2 - 10.1109/NSSMIC.2012.6551061
DO - 10.1109/NSSMIC.2012.6551061
M3 - Conference contribution
AN - SCOPUS:84881594922
SN - 9781467320306
T3 - IEEE Nuclear Science Symposium Conference Record
SP - 62
EP - 65
BT - 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, NSS/MIC 2012
T2 - 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, NSS/MIC 2012
Y2 - 29 October 2012 through 3 November 2012
ER -