A peak detection in noisy spectrum using principal component analysis

Eungi Min, Mincheol Ko, Yongkwon Kim, Jinhun Joung, Kisung Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Citations (Scopus)

Abstract

A spectrum of a radio isotope (RI) contains a single or multiple photo-peaks and radio-activities of all energy levels. These characteristics of each RI source are measured by radiation monitor (RM) systems. However, if the radiation count is extremely low and source to detector distance is too far, we cannot acquire good spectroscopic results for RI identification by RM devices while we still able to measure some counting statistics. Thus, precise peak detection in noisy spectrums is one of the most important tasks in the RM system. In this study, we developed an accurate peak detection method based on wavelet decomposition followed by principal component analysis. We used a discrete wavelet transform (DWT) for reduction of unnecessary high frequency noises in low counts spectrums. To reduce effect of a background radiation, we made a background template using a pre-measured background spectrum and calculated square errors for suppressing a background of low energy levels and maintaining true photo-peaks. Finally, we analyzed pre-processed data and detected photo-peaks using PCA. We measured Cesium 137(Cs-137) and Barium 133(Ba-133) with 1 and 10 micro curies collected from the various distance. Each spectrum was collected for a second and total 60 sets were stored for each isotope. Results of our research show that the proposed algorithm achieves high sensitivity and specificity, proving that the algorithm is appropriate for RM systems.

Original languageEnglish
Title of host publication2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, NSS/MIC 2012
Pages62-65
Number of pages4
DOIs
Publication statusPublished - 2012
Event2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, NSS/MIC 2012 - Anaheim, CA, United States
Duration: 2012 Oct 292012 Nov 3

Publication series

NameIEEE Nuclear Science Symposium Conference Record
ISSN (Print)1095-7863

Other

Other2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, NSS/MIC 2012
Country/TerritoryUnited States
CityAnaheim, CA
Period12/10/2912/11/3

ASJC Scopus subject areas

  • Radiation
  • Nuclear and High Energy Physics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'A peak detection in noisy spectrum using principal component analysis'. Together they form a unique fingerprint.

Cite this