Abstract
In this paper, we investigate if the MR prostate segmentation performance could be improved, by only providing one-point labeling information in the prostate region. To achieve this goal, by asking the physician to first click one point inside the prostate region, we present a novel segmentation method by simultaneously integrating the boundary detection results and the patch-based prediction. Particularly, since the clicked point belongs to the prostate, we first generate the location-prior maps, with two basic assumptions: (1) a point closer to the clicked point should be with higher probability to be the prostate voxel, (2) a point separated by more boundaries to the clicked point, will have lower chance to be the prostate voxel. We perform the Canny edge detector and obtain two location-prior maps from horizontal and vertical directions, respectively. Then, the obtained location-prior maps along with the original MR images are fed into a multi-channel fully convolutional network to conduct the patch-based prediction. With the obtained prostate-likelihood map, we employ a level-set method to achieve the final segmentation. We evaluate the performance of our method on 22 MR images collected from 22 different patients, with the manual delineation provided as the ground truth for evaluation. The experimental results not only show the promising performance of our method but also demonstrate the one-point labeling could largely enhance the results when a pure patch-based prediction fails.
Original language | English |
---|---|
Title of host publication | Machine Learning in Medical Imaging - 8th International Workshop, MLMI 2017, Held in Conjunction with MICCAI 2017, Proceedings |
Editors | Yinghuan Shi, Heung-Il Suk, Kenji Suzuki, Qian Wang |
Publisher | Springer Verlag |
Pages | 220-228 |
Number of pages | 9 |
ISBN (Print) | 9783319673882 |
DOIs | |
Publication status | Published - 2017 |
Event | 8th International Workshop on Machine Learning in Medical Imaging, MLMI 2017 held in conjunction with the 20th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2017 - Quebec City, Canada Duration: 2017 Sept 10 → 2017 Sept 10 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 10541 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Other
Other | 8th International Workshop on Machine Learning in Medical Imaging, MLMI 2017 held in conjunction with the 20th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2017 |
---|---|
Country/Territory | Canada |
City | Quebec City |
Period | 17/9/10 → 17/9/10 |
Bibliographical note
Publisher Copyright:© 2017, Springer International Publishing AG.
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science