A reaction model for plasma coating of nanoparticles by amorphous carbon layers

A. L. Yarin, B. Rovagnati, F. Mashayek, T. Matsoukas

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)


A detailed chemical kinetics scheme of the reactions occurring in a C H4 H2 plasma, namely, electron-neutral, ion-neutral, and neutral-neutral reactions, is implemented for the prediction of the species fluxes toward the surface of a submicron particle in a low-pressure environment. Surface reactions at the particle surface are also accounted for. Kinetic theory is applied in the collisionless region within a distance of one mean free path away from the particle, while continuum theory is implemented to solve for species transport in the outer region where reactive-diffusive phenomena occur. These regions are bounded by appropriate boundary conditions. The self-consistent electric field is obtained by solving the Poisson's equation in the continuum region. The charged and neutral species distributions are calculated and the growth rate of the amorphous carbon layer at the particle surface, as well as particle charging, are predicted. The predicted growth rate is within the range of experimental data from literature for similar conditions. This shows that the model reflects rather accurately the complicated physicochemical phenomena occurring in real systems.

Original languageEnglish
Article number064310
JournalJournal of Applied Physics
Issue number6
Publication statusPublished - 2006

ASJC Scopus subject areas

  • Physics and Astronomy(all)


Dive into the research topics of 'A reaction model for plasma coating of nanoparticles by amorphous carbon layers'. Together they form a unique fingerprint.

Cite this