TY - GEN
T1 - A reaction model for plasma coating of nanoparticles in hydrocarbon plasma
AU - Yarin, Alexander L.
AU - Rovagnati, Beniamino
AU - Mashayek, Farzad
AU - Matsoukas, Themis
PY - 2005
Y1 - 2005
N2 - A detailed chemical kinetics scheme of the reactions occurring in a CH4/H2 plasma is used to model the deposition of amorphous carbon films onto submicron particle suspended in the plasma. The model includes electron-neutral, ion-neutral, and neutral-neutral reactions and solves for the radial distribution of species in the vicinity of the particle. Concentration profiles are obtained by solving simultaneously the diffusion equation for all species that deposit on the particle surface, and the Poisson equation for the charge-carrying species. To accommodate the low-pressure environment, the continuum equations are solved to within one mean-free path from the particle surface while kinetic theory is used to treat phenomena inside the vacuum sphere, i.e., at distances shorter than one mean-free path. Calculations at various plasma conditions and the results observed trends in light of available experimental data are presented. This is an abstract of a paper presented at the AIChE Annual Meeting and Fall Showcase (Cincinnati, OH 10/30/2005-11/4/2005).
AB - A detailed chemical kinetics scheme of the reactions occurring in a CH4/H2 plasma is used to model the deposition of amorphous carbon films onto submicron particle suspended in the plasma. The model includes electron-neutral, ion-neutral, and neutral-neutral reactions and solves for the radial distribution of species in the vicinity of the particle. Concentration profiles are obtained by solving simultaneously the diffusion equation for all species that deposit on the particle surface, and the Poisson equation for the charge-carrying species. To accommodate the low-pressure environment, the continuum equations are solved to within one mean-free path from the particle surface while kinetic theory is used to treat phenomena inside the vacuum sphere, i.e., at distances shorter than one mean-free path. Calculations at various plasma conditions and the results observed trends in light of available experimental data are presented. This is an abstract of a paper presented at the AIChE Annual Meeting and Fall Showcase (Cincinnati, OH 10/30/2005-11/4/2005).
UR - http://www.scopus.com/inward/record.url?scp=33646753858&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:33646753858
SN - 0816909962
SN - 9780816909964
T3 - AIChE Annual Meeting Conference Proceedings
BT - 05AIChE
PB - American Institute of Chemical Engineers
T2 - 05AIChE: 2005 AIChE Annual Meeting and Fall Showcase
Y2 - 30 October 2005 through 4 November 2005
ER -