TY - JOUR
T1 - A remediation approach to chromium-contaminated water and soil using engineered biochar derived from peanut shell
AU - Murad, Hafiza Afia
AU - Ahmad, Mahtab
AU - Bundschuh, Jochen
AU - Hashimoto, Yohey
AU - Zhang, Ming
AU - Sarkar, Binoy
AU - Ok, Yong Sik
N1 - Funding Information:
The study was partly supported by the University Research Fund (URF) of Quaid-i-Azam University . This work was carried out with the support of the Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01475801 ) from Rural Development Administration, the Republic of Korea. This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C2011734 ) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education ( NRF-2021R1A6A1A10045235 ).
Publisher Copyright:
© 2021
PY - 2022/3
Y1 - 2022/3
N2 - Hexavalent chromium (Cr[VI]) is one of the major environmental concerns due to its excessive discharge through effluents from the leather tanning industry. Peanut production leads to the generation of residual shells as waste calling for sustainable disposal. In this study, we employed an innovative approach of applying peanut-shell-derived pristine and engineered biochar for the remediation of Cr-contaminated wastewater and soil. The peanut shell waste was converted to biochar, which was further engineered with cetyltrimethylammonium bromide (CTAB, a commonly used cationic surfactant). The biochars were then used for the adsorption and immobilization of Cr(VI) in water and soil, respectively. The adsorption experiments demonstrated high Cr(VI) removal efficiency for the engineered biochar (79.35%) compared with the pristine biochar (37.47%). The Langmuir model best described the Cr(VI) adsorption onto the biochars (R2 > 0.97), indicating monolayer adsorption. Meanwhile, the adsorption kinetics indicated that chemisorption was the dominant mechanism of interaction between the Cr(VI) and the biochars, as indicated by the best fitting to the pseudo-second-order model (R2 > 0.98). Adsorption through the fixed-bed column also presented higher Cr(VI) adsorption onto the engineered biochar (qeq = 22.93 mg g−1) than onto the pristine biochar (qeq = 18.54 mg g−1). In addition, the desorption rate was higher for the pristine biochar column (13.83 mg g−1) than the engineered biochar column (10.45 mg g−1), indicating that Cr(VI) was more strongly adsorbed onto the engineered biochar. A higher immobilization of Cr(VI) was observed in the soil with the engineered biochar than with the pristine biochar, as was confirmed by the significant decreases in the Cr(VI) bioavailability (92%), leachability (100%), and bioaccessibility (97%) compared with the control (soil without biochar). The CTAB-engineered biochar could thus potentially be used as an efficient adsorbent for the removal and the immobilization of Cr(VI) in water and soil, respectively.
AB - Hexavalent chromium (Cr[VI]) is one of the major environmental concerns due to its excessive discharge through effluents from the leather tanning industry. Peanut production leads to the generation of residual shells as waste calling for sustainable disposal. In this study, we employed an innovative approach of applying peanut-shell-derived pristine and engineered biochar for the remediation of Cr-contaminated wastewater and soil. The peanut shell waste was converted to biochar, which was further engineered with cetyltrimethylammonium bromide (CTAB, a commonly used cationic surfactant). The biochars were then used for the adsorption and immobilization of Cr(VI) in water and soil, respectively. The adsorption experiments demonstrated high Cr(VI) removal efficiency for the engineered biochar (79.35%) compared with the pristine biochar (37.47%). The Langmuir model best described the Cr(VI) adsorption onto the biochars (R2 > 0.97), indicating monolayer adsorption. Meanwhile, the adsorption kinetics indicated that chemisorption was the dominant mechanism of interaction between the Cr(VI) and the biochars, as indicated by the best fitting to the pseudo-second-order model (R2 > 0.98). Adsorption through the fixed-bed column also presented higher Cr(VI) adsorption onto the engineered biochar (qeq = 22.93 mg g−1) than onto the pristine biochar (qeq = 18.54 mg g−1). In addition, the desorption rate was higher for the pristine biochar column (13.83 mg g−1) than the engineered biochar column (10.45 mg g−1), indicating that Cr(VI) was more strongly adsorbed onto the engineered biochar. A higher immobilization of Cr(VI) was observed in the soil with the engineered biochar than with the pristine biochar, as was confirmed by the significant decreases in the Cr(VI) bioavailability (92%), leachability (100%), and bioaccessibility (97%) compared with the control (soil without biochar). The CTAB-engineered biochar could thus potentially be used as an efficient adsorbent for the removal and the immobilization of Cr(VI) in water and soil, respectively.
KW - Designer biochar
KW - Life on land
KW - Soil quality
KW - Soil remediation
KW - Sustainable development goals
UR - http://www.scopus.com/inward/record.url?scp=85116350517&partnerID=8YFLogxK
U2 - 10.1016/j.envres.2021.112125
DO - 10.1016/j.envres.2021.112125
M3 - Article
C2 - 34592252
AN - SCOPUS:85116350517
SN - 0013-9351
VL - 204
JO - Environmental Research
JF - Environmental Research
M1 - 112125
ER -