A supervised machine learning approach to discriminate the effect of carcass leachate on shallow groundwater quality around on-farm livestock mortality burial sites

Junseop Oh, Ho Rim Kim, Soonyoung Yu, Kyoung Ho Kim, Jeong Ho Lee, Sunhwa Park, Hyunkoo Kim, Seong Taek Yun

Research output: Contribution to journalArticlepeer-review

Abstract

The evaluation of leachate leakage at livestock mortality burial sites is challenging, particularly when groundwater is previously contaminated by agro-livestock farming. Supervised machine learning was applied to discriminate the impacts of carcass leachate from pervasive groundwater contamination in the following order: data labeling, feature selection, synthetic data generation, and classification. Physicochemical data of 359 water samples were collected from burial pits (LC), monitoring wells near pits (MW), pre-existing shallow household wells (HW), and background wells with pervasive contamination (BG). A linear classification model was built using two representative groups (LC and BG) affected by different pollution sources as labeled data. A classifier was then applied to assess the impact of leachate leakage in MW and HW. As a result, leachate impacts were observed in 40% of MW samples, which indicates improper construction and management of some burial pits. Leachate impacts were also detected in six HW samples, up to 120 m downgradient, within one year. The quantitative decision-making tool to diagnose groundwater contamination with leachate leakage can contribute to ensuring timely responses to leakage. The proposed machine learning approach can also be used to improve the environmental impact assessment of water pollution by improper disposal of organic waste.

Original languageEnglish
Article number131712
JournalJournal of hazardous materials
Volume457
DOIs
Publication statusPublished - 2023 Sept 5

Bibliographical note

Funding Information:
This research was supported by the Korea Environmental Industry and Technology Institute ( KEITI ) through a project (Integrated environmental forensic approaches to trace sources and pathways of subsurface contaminants) funded by the Korea Ministry of Environment (MOE) ( 2021002440003 ). Data collection was initiated with the support of the Ministry of Environment of Korea through the National Institute of Environmental Research (Project: A Study for the Evaluation of Groundwater Contamination and Proper Management Plan in Livestock Burial Sites). Partial support was also given by the Basic Research Project ( GP2021–007 ) of the Korea Institute of Geoscience and Mineral Resources (KIGAM). We also thank reviewers for providing detailed and constructive comments on the manuscript.

Publisher Copyright:
© 2023 Elsevier B.V.

Keywords

  • Carcass leachate leakage
  • Classification model
  • Data labeling and feature selection
  • Groundwater contamination
  • Livestock burial

ASJC Scopus subject areas

  • Environmental Engineering
  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'A supervised machine learning approach to discriminate the effect of carcass leachate on shallow groundwater quality around on-farm livestock mortality burial sites'. Together they form a unique fingerprint.

Cite this