A Wall-Mounted Robot Arm Equipped with a 4-DOF Yaw-Pitch-Yaw-Pitch Counterbalance Mechanism

Jae Kyung Min, Do Won Kim, Jae Bok Song

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)


Because industrial robots are relatively heavy, most of motor torque are used to support the weight of a robot. Consequently, high-capacity motors and speed reducers are needed, resulting in a low energy efficiency and an increase in the manufacturing cost. To deal with this problem, a variety of spring-based counterbalance mechanisms (CBM) have been developed to mechanically compensate for the gravitational torque caused by the robot weight and payload. However, conventional CBMs are limited to pitch joints whose axis of rotation is horizontal to the ground and it is difficult to apply them to robot arms with different joint configurations, such as humanoid robot arms. In this study, we propose a CBM with a passive yaw-pitch structure consisting of a spring and wire. Through geometrical analysis and experiments, we demonstrate that the proposed CBM can effectively compensate for the gravitational torque due to robot weight and payload.

Original languageEnglish
Article number9006847
Pages (from-to)3773-3779
Number of pages7
JournalIEEE Robotics and Automation Letters
Issue number3
Publication statusPublished - 2020 Jul


  • Manipulators
  • Springs

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Biomedical Engineering
  • Human-Computer Interaction
  • Mechanical Engineering
  • Computer Vision and Pattern Recognition
  • Computer Science Applications
  • Control and Optimization
  • Artificial Intelligence


Dive into the research topics of 'A Wall-Mounted Robot Arm Equipped with a 4-DOF Yaw-Pitch-Yaw-Pitch Counterbalance Mechanism'. Together they form a unique fingerprint.

Cite this