A Whole-Cell Surface Plasmon Resonance Sensor Based on a Leucine Auxotroph of Escherichia coli Displaying a Gold-Binding Protein: Usefulness for Diagnosis of Maple Syrup Urine Disease

Min Ah Woo, Jung Hun Park, Daeyeon Cho, Sang Jun Sim, Moon Il Kim, Hyun Gyu Park

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

We developed a whole-cell surface plasmon resonance (SPR) sensor based on a leucine auxotroph of Escherichia coli displaying a gold-binding protein (GBP) in response to cell growth and applied this sensor to the diagnosis of maple syrup urine disease, which is represented by the elevated leucine level in blood. The leucine auxotroph was genetically engineered to grow displaying GBP in a proportion to the concentration of target amino acid leucine. The GBP expressed on the surface of the auxotrophs directly bound to the golden surface of an SPR chip without the need for any additional treatment or reagents, which consequently produced SPR signals used to determine leucine levels in a test sample. Gold nanoparticles (GNPs) were further applied to the SPR system, which significantly enhanced the signal intensity up to 10-fold by specifically binding to GBP expressed on the cell surface. Finally, the diagnostic utility of our system was demonstrated by its employment in reliably determining different statuses of maple syrup urine disease based on a known cutoff level of leucine. This new approach based on an amino acid-auxotrophic E. coli strain expressing a GBP that binds to an SPR sensor holds great promise for detection of other metabolic diseases of newborn babies including homocystinuria and phenylketonuria, which are also associated with abnormal levels of amino acids.

Original languageEnglish
Pages (from-to)2871-2876
Number of pages6
JournalAnalytical chemistry
Volume88
Issue number5
DOIs
Publication statusPublished - 2016 Mar 1

Bibliographical note

Funding Information:
This work was financially supported by the Center for BioNano Health-Guard funded by the Ministry of Science, ICT, and Future Planning (MSIP) of Korea as a Global Frontier Project (Grant H-GUARD-2013M3A6B2078964) and by the Basic Science Research Program through the NRF funded by the Ministry of Education [no. 2015R1A2A1A01005393]. This study was also supported by the National Research Foundation of Korea (NRF) grants [no. NRF-2013R1A2A1A01015644] of the MSIP of Korea. This research was also supported by the Korea Food Research Institute.

Publisher Copyright:
© 2016 American Chemical Society.

ASJC Scopus subject areas

  • Analytical Chemistry

Fingerprint

Dive into the research topics of 'A Whole-Cell Surface Plasmon Resonance Sensor Based on a Leucine Auxotroph of Escherichia coli Displaying a Gold-Binding Protein: Usefulness for Diagnosis of Maple Syrup Urine Disease'. Together they form a unique fingerprint.

Cite this