aBEAT: A Toolbox for Consistent Analysis of Longitudinal Adult Brain MRI

Yakang Dai, Yaping Wang, Li Wang, Guorong Wu, Feng Shi, Dinggang Shen

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Longitudinal brain image analysis is critical for revealing subtle but complex structural and functional changes of brain during aging or in neurodevelopmental disease. However, even with the rapid increase of clinical research and trials, a software toolbox dedicated for longitudinal image analysis is still lacking publicly. To cater for this increasing need, we have developed a dedicated 4D Adult Brain Extraction and Analysis Toolbox (aBEAT) to provide robust and accurate analysis of the longitudinal adult brain MR images. Specially, a group of image processing tools were integrated into aBEAT, including 4D brain extraction, 4D tissue segmentation, and 4D brain labeling. First, a 4D deformable-surface-based brain extraction algorithm, which can deform serial brain surfaces simultaneously under temporal smoothness constraint, was developed for consistent brain extraction. Second, a level-sets-based 4D tissue segmentation algorithm that incorporates local intensity distribution, spatial cortical-thickness constraint, and temporal cortical-thickness consistency was also included in aBEAT for consistent brain tissue segmentation. Third, a longitudinal groupwise image registration framework was further integrated into aBEAT for consistent ROI labeling by simultaneously warping a pre-labeled brain atlas to the longitudinal brain images. The performance of aBEAT has been extensively evaluated on a large number of longitudinal MR T1 images which include normal and dementia subjects, achieving very promising results. A Linux-based standalone package of aBEAT is now freely available at http://www.nitrc.org/projects/abeat.

Original languageEnglish
Article numbere60344
JournalPloS one
Volume8
Issue number4
DOIs
Publication statusPublished - 2013 Apr 3

Bibliographical note

Funding Information:
Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf . The following statements from ADNI on the ADNI database are cited: “Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott; Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Amorfix Life Sciences Ltd.; AstraZeneca; Bayer HealthCare; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health ( www.fnih.org ). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles.”

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'aBEAT: A Toolbox for Consistent Analysis of Longitudinal Adult Brain MRI'. Together they form a unique fingerprint.

Cite this