Abstract
An acidic cultivation strategy was developed to prevent contamination of a lethal fungus Paraphysoderma sedebokerensis in Haematococcus pluvialis culture for astaxanthin production. Instead of generally used neutral pH, an acidic condition (pH 4) was applied to the cultivation, resulting in a significant inhibition of the fungal contamination. This could be ascribed to the acidity-associated denaturation of a surface protein of P. sedebokerensis, which plays an important role in recognition of H. pluvialis. Stress relief strategies including stepwise light irradiation and naturally occurring nitrogen deficiency were employed in the induction stage to minimize the reduction of astaxanthin production caused by acidic pH. Accordingly, an astaxanthin titer of 84.8 mg L−1 was obtained, which is 141-fold of that from the completely contaminated culture and double of that without the stress relief methods. This strategy provides a persistent contamination control method that can be used for practical astaxanthin production by H. pluvialis.
Original language | English |
---|---|
Pages (from-to) | 138-144 |
Number of pages | 7 |
Journal | Bioresource technology |
Volume | 278 |
DOIs | |
Publication status | Published - 2019 Apr |
Bibliographical note
Funding Information:The authors are grateful for the support of the Korea CCS R&D Center (Korea CCS 2020 Project) which was funded by the Korean Government (Ministry of Science and ICT) in 2018 (Grant Number: KCRC - 2014M1A8A1049278 ). The authors thank the National Research Foundation of Korea (NRF) (Grant Number: NRF-2016R1A2A1A05005465) for support, and also gratefully acknowledge the support of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), which was funded by the Korean Government ( Ministry of Trade, Industry and Energy ) (Grant Number: 20172010202050 ).
Funding Information:
The authors are grateful for the support of the Korea CCS R&D Center (Korea CCS 2020 Project) which was funded by the Korean Government (Ministry of Science and ICT) in 2018 (Grant Number: KCRC-2014M1A8A1049278). The authors thank the National Research Foundation of Korea (NRF) (Grant Number: NRF-2016R1A2A1A05005465) for support, and also gratefully acknowledge the support of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), which was funded by the Korean Government (Ministry of Trade, Industry and Energy) (Grant Number: 20172010202050).
Publisher Copyright:
© 2019 Elsevier Ltd
Keywords
- Acidic cultivation
- Astaxanthin
- Haematococcus pluvialis
- Paraphysoderma sedebokerensis
- Stress relief
ASJC Scopus subject areas
- Bioengineering
- Environmental Engineering
- Renewable Energy, Sustainability and the Environment
- Waste Management and Disposal