Abstract
Background: Glioblastoma is the most common primary brain tumor, with typical histopathologic findings, pseudopalisading necrosis, and microvascular proliferation, all of which are associated with a poor prognosis. Hypoxia is known to affect these morphological features, but the underlying molecular mechanism has been poorly understood. Objective: To determine the role of signal transducer and activator of transcription 3 (STAT3) in the malignant progression of glioblastoma under hypoxic conditions. Methods: We studied STAT3 activation by hypoxic stress and its effect on hypoxia-induced angiogenesis and cell migration using U87, A172, T98, and U373 human glioblastoma cell lines. Results: All four glioblastoma cells analyzed expressed detectable levels of STAT3 phosphorylation. Hypoxic stress markedly increased phosphorylated STAT3 level in a time-dependent fashion, and activated STAT3 was translocated into the nucleus. Hypoxic conditions led to a 30-50% increase in angiogenesis and cell migration, but these effects were significantly attenuated by small interfering ribonucleic acid-mediated knockdown of STAT3. Furthermore, STAT3 activation was associated with an elevated expression of hypoxic inducible factor-1, vascular endothelial growth factor, matrix metalloproteinase 2, and TWIST messenger ribonucleic acid and protein, which may play a critical role in hypoxia-induced angiogenesis and migration. Conclusion: STAT3 plays an important role in glioblastoma angiogenesis and migration triggered by hypoxia. Therefore, STAT3 might be a target for control of pseudopalisading necrosis and angiogenesis in glioblastoma.
Original language | English |
---|---|
Pages (from-to) | 1386-1395 |
Number of pages | 10 |
Journal | Neurosurgery |
Volume | 67 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2010 Nov |
Keywords
- Angiogenesis
- Glioblastoma
- Hypoxia
- Migration
- Signal transducer and activator of transcription 3
ASJC Scopus subject areas
- Surgery
- Clinical Neurology