Abstract
The role of water in the excellent biocompatibility of the acrylate-based polymers widely used for antibiofouling coating material has been realized previously. Here, we report femtosecond mid-infrared pump-probe spectroscopy of the OD stretch band of HOD molecule adsorbed on highly biocompatible poly(2-methoxyethyl) acrylate [PMEA] and poorly biocompatible poly(2-phenoxyethyl) acrylate [PPEA], both of which reveal that there are two water species with significantly different vibrational lifetime. PMEA interacts more strongly with water than PPEA through the H-bonding interaction between carbonyl (C=O) and water. The vibrational lifetime of the OD stretch in PPEA is notably longer by factors of 3 and 7 than those in PMEA and bulk water, respectively. The IR-pump visible-probe photothermal imaging further unravels substantial spatial overlap between polymer CO group and water for hydrated PMEA and a significant difference in surface morphology than those in PPEA, which exhibits the underlying relationships among polymer-water interaction, surface morphology, and biocompatibility.
Original language | English |
---|---|
Pages (from-to) | 9275-9282 |
Number of pages | 8 |
Journal | Journal of Physical Chemistry Letters |
Volume | 12 |
Issue number | 38 |
DOIs | |
Publication status | Published - 2021 Sept 30 |
Bibliographical note
Publisher Copyright:© 2021 American Chemical Society.
ASJC Scopus subject areas
- General Materials Science
- Physical and Theoretical Chemistry