TY - JOUR
T1 - Adsorption performance of standard biochar materials against volatile organic compounds in air
T2 - A case study using benzene and methyl ethyl ketone
AU - Vikrant, Kumar
AU - Kim, Ki Hyun
AU - Peng, Wanxi
AU - Ge, Shengbo
AU - Sik Ok, Yong
N1 - Funding Information:
We would like to acknowledge support by the R&D Center for Green Patrol Technologies through the R&D for Global Top Environmental Technologies funded by the Ministry of Environment (MOE), as well as by a grant from the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, & Future Planning (Grant No: 2016R1E1A1A01940995 ). This study was supported by the Korea Ministry of Environment (MOE) as part of the “Technology Program for Establishing Biocide Safety Management” (2018002490001). Appendix A
Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2020/5/1
Y1 - 2020/5/1
N2 - Recently, biochars have been proposed as highly efficient and low-cost media for the adsorptive removal of various hazardous compounds. However, there is a dearth of literature focusing on adsorption performance of biochars against gaseous volatile organic compounds (VOCs). In light of this limitation, the adsorption performances of 12 standard biochars made of six different raw materials (i.e., Miscanthus straw pellets, oil seed rape straw pellets, rice husk, sewage sludge, soft wood pellets, and wheat straw pellets) at two pyrolysis temperature conditions (i.e., 550 °C and 700 °C) were investigated against two model gaseous VOCs (i.e., benzene and methyl ethyl ketone (MEK)) at 1 Pa each. The breakthrough volume (BTV) and partition coefficient (PC) of benzene at 10% BTV, when measured for all these biochars, varied from 1.4 to 10 L atm g−1 and 6.E-04 to 1.4E-02 mol kg−1 Pa−1, respectively. Similarly, their counterpart values for MEK were 1.8 to 40 L atm g−1 and 1.E-03 to 2.E-03 mol kg−1 Pa−1, respectively. The largest adsorption capacity values for benzene (2.9 mg g−1) and MEK (43 mg g−1) were observed from the soft wood pellet biochar prepared at 700 °C (SWP700) and rice husk biochar prepared at 550 °C (RH550), respectively. The results indicate that most biochars adsorbed MEK preferentially over benzene. The adsorption of MEK appeared to be primarily influenced by surface features and composition of each specific biochar, while that of benzene was proportionate to their surface area. Overall, the results of this investigation are expected to help establish technical standards for effective removal of gaseous VOCs by biochars.
AB - Recently, biochars have been proposed as highly efficient and low-cost media for the adsorptive removal of various hazardous compounds. However, there is a dearth of literature focusing on adsorption performance of biochars against gaseous volatile organic compounds (VOCs). In light of this limitation, the adsorption performances of 12 standard biochars made of six different raw materials (i.e., Miscanthus straw pellets, oil seed rape straw pellets, rice husk, sewage sludge, soft wood pellets, and wheat straw pellets) at two pyrolysis temperature conditions (i.e., 550 °C and 700 °C) were investigated against two model gaseous VOCs (i.e., benzene and methyl ethyl ketone (MEK)) at 1 Pa each. The breakthrough volume (BTV) and partition coefficient (PC) of benzene at 10% BTV, when measured for all these biochars, varied from 1.4 to 10 L atm g−1 and 6.E-04 to 1.4E-02 mol kg−1 Pa−1, respectively. Similarly, their counterpart values for MEK were 1.8 to 40 L atm g−1 and 1.E-03 to 2.E-03 mol kg−1 Pa−1, respectively. The largest adsorption capacity values for benzene (2.9 mg g−1) and MEK (43 mg g−1) were observed from the soft wood pellet biochar prepared at 700 °C (SWP700) and rice husk biochar prepared at 550 °C (RH550), respectively. The results indicate that most biochars adsorbed MEK preferentially over benzene. The adsorption of MEK appeared to be primarily influenced by surface features and composition of each specific biochar, while that of benzene was proportionate to their surface area. Overall, the results of this investigation are expected to help establish technical standards for effective removal of gaseous VOCs by biochars.
KW - Adsorption
KW - Air pollution
KW - Biochars
KW - Pollution control
KW - Volatile organic compounds
UR - http://www.scopus.com/inward/record.url?scp=85078579787&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2019.123943
DO - 10.1016/j.cej.2019.123943
M3 - Article
AN - SCOPUS:85078579787
SN - 1385-8947
VL - 387
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 123943
ER -