Advanced Development Strategy of Nano Catalyst and DFT Calculations for Direct Synthesis of Hydrogen Peroxide

Geun Ho Han, Seok Ho Lee, Seong Yeon Hwang, Kwan Young Lee

Research output: Contribution to journalReview articlepeer-review

47 Citations (Scopus)


Hydrogen peroxide is a simple oxidizing agent. Its environmental benignness and effectiveness have led to a continuous increase in its use and production. Anthraquinone autoxidation (the AO process) is generally used to manufacture hydrogen peroxide (H2O2); however, this complex multi-stage process releases large amounts of organic solvent into the environment and requires significant energy to operate. As a green and energy-efficient production method, the direct synthesis of hydrogen peroxide (DSHP) from molecular hydrogen and oxygen can overcome the disadvantages of the AO process. However, DSHP has remained challenging until recently as severe mass-transfer limitations and unavoidable side reactions result in insufficient selectivity for H2O2. However, beyond the conventional development methods for catalysts, recent advances in chemical and engineering fields can appreciably assist in the discovery of a “dream catalyst” for DSHP; high-end computational methods and the facile surface-controllable syntheses of nanocatalysts. This review addresses how a combination of density functional theory (DFT) calculations and nanocatalyst synthesis technologies lead to the development of high-performance catalysts for DSHP, and provides guidelines on efficient methodologies for the development of catalysts through the use of cutting edge technologies.

Original languageEnglish
Article number2003121
JournalAdvanced Energy Materials
Issue number27
Publication statusPublished - 2021 Jul 22

Bibliographical note

Funding Information:
This work was supported by Creative Materials Discovery Program through the National Research Foundation of Korea (NRF‐2016M3D1A1021140).

Publisher Copyright:
© 2021 Wiley-VCH GmbH


  • characterizations, DFT calculations
  • direct synthesis of hydrogen peroxide
  • electrocatalysis, nanoparticles synthesis

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • General Materials Science


Dive into the research topics of 'Advanced Development Strategy of Nano Catalyst and DFT Calculations for Direct Synthesis of Hydrogen Peroxide'. Together they form a unique fingerprint.

Cite this