Advances in self-healing materials based on vascular networks with mechanical self-repair characteristics

Min Wook Lee, Seongpil An, Sam S. Yoon, Alexander L. Yarin

Research output: Contribution to journalReview articlepeer-review

74 Citations (Scopus)

Abstract

Here, we review the state-of-the-art in the field of engineered self-healing materials. These materials mimic the functionalities of various natural materials found in the human body (e.g., the healing of skin and bones by the vascular system). The fabrication methods used to produce these “vascular-system-like” engineered self-healing materials, such as electrospinning (including co-electrospinning and emulsion spinning) and solution blowing (including coaxial solution blowing and emulsion blowing) are discussed in detail. Further, a few other approaches involving the use of hollow fibers are also described. In addition, various currently used healing materials/agents, such as dicyclopentadiene and Grubbs' catalyst, poly(dimethyl siloxane), and bisphenol-A-based epoxy, are described. We also review the characterization methods employed to verify the physical and chemical aspects of self-healing, that is, the methods used to confirm that the healing agent has been released and that it has resulted in healing, as well as the morphological changes induced in the damaged material by the healing agent. These characterization methods include different visualization and spectroscopy techniques and thermal analysis methods. Special attention is paid to the characterization of the mechanical consequences of self-healing. The effects of self-healing on the mechanical properties such as stiffness and adhesion of the damaged material are evaluated using the tensile test, double cantilever beam test, plane strip test, bending test, and adhesion test (e.g., blister test). Finally, the future direction of the development of these systems is discussed.

Original languageEnglish
Pages (from-to)21-37
Number of pages17
JournalAdvances in Colloid and Interface Science
Volume252
DOIs
Publication statusPublished - 2018 Feb 1

Keywords

  • Biomimetic
  • Mechanical properties
  • Nanofibers
  • Self-healing

ASJC Scopus subject areas

  • Surfaces and Interfaces
  • Physical and Theoretical Chemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Advances in self-healing materials based on vascular networks with mechanical self-repair characteristics'. Together they form a unique fingerprint.

Cite this