Affine invariant detection of perceptually parallel 3D planar curves

Dinggang Shen, Horace H.S. Ip, Eam Khwang Teoh

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)


The problem of parallelism detection between two curves has been formulated in this paper as a line detection problem within an affine-invariant local similarity matrix computed for the two curves. Each element of this matrix gives an affine invariant measure of local parallelism for any pair of curve segments along the two curves. This approach enables the detection of a pair of parallel 3D planar curves as well as parallel 2D curves under general affine transform. Two descriptors were also used here to provide a multi-resolution representation of a curve. Since these two descriptors provide sufficient local and semi-local shape information at every feature point on the curves, the process of detecting parallelism is thus robust against both noise and deformations. Moreover, the proposed technique allows all significant pairs of parallel segments within any two curves in the scene to be detected. Experiments on detecting randomly affine-transformed curves, which are obtained from natural images or artificially generated images, have demonstrated the effectiveness of the technique.

Original languageEnglish
Pages (from-to)1909-1918
Number of pages10
JournalPattern Recognition
Issue number11
Publication statusPublished - 2000
Externally publishedYes

Bibliographical note

Copyright 2017 Elsevier B.V., All rights reserved.

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Computer Vision and Pattern Recognition
  • Artificial Intelligence


Dive into the research topics of 'Affine invariant detection of perceptually parallel 3D planar curves'. Together they form a unique fingerprint.

Cite this