Abstract
Previously we have demonstrated transglutaminase 2 (TGase 2) inhibition abrogated renal cell carcinoma (RCC) using GK921 (3-(phenylethynyl)-2-(2-(pyridin-2-yl)ethoxy)pyrido[3,2-b]pyrazine), although the mechanism of TGase 2 inhibition remains unsolved. Recently, we found that the increase of TGase 2 expression is required for p53 depletion in RCC by transporting the TGase 2 (1–139 a.a)–p53 complex to the autophagosome, through TGase 2 (472–687 a.a) binding p62. In this study, mass analysis revealed that GK921 bound to the N terminus of TGase 2 (81–116 a.a), which stabilized p53 by blocking TGase 2 binding. This suggests that RCC survival can be stopped by p53-induced cell death through blocking the p53–TGase 2 complex formation using GK921. Although GK921 does not bind to the active site of TGase 2, GK921 binding to the N terminus of TGase 2 also inactivated TGase 2 activity through acceleration of non-covalent self-polymerization of TGase 2 via conformational change. This suggests that TGase 2 has an allosteric binding site (81–116 a.a) which changes the conformation of TGase 2 enough to accelerate inactivation through self-polymer formation.
Original language | English |
---|---|
Pages (from-to) | 1583-1594 |
Number of pages | 12 |
Journal | Amino Acids |
Volume | 50 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2018 Nov 1 |
Bibliographical note
Publisher Copyright:© 2018, The Author(s).
Keywords
- Allosteric binding site
- GK921
- Transglutaminase 2
- p53
ASJC Scopus subject areas
- Biochemistry
- Clinical Biochemistry
- Organic Chemistry