TY - JOUR
T1 - Amide i Raman optical activity of polypeptides
T2 - Fragment approximation
AU - Choi, Jun Ho
AU - Cho, Minhaeng
N1 - Funding Information:
This work was supported by the Creative Research Initiatives Program of MEST/KOSEF.
PY - 2009
Y1 - 2009
N2 - Vibrational optical activity (VOA) is an important property used to determine the absolute configuration of a chiral molecule in condensed phases. In particular, vibrational circular dichroism and Raman optical activity (ROA) are two representative VOA measurement techniques that have been extensively used to study structures and dynamics of biomolecules. Recently, the amide I vibrational circular dichroism of polypeptides was theoretically described by using fragment approximation methods, which are based on the assumption that amide I VOA can be described as a linear combination of those of constituent fragment peptide units. Here, we develop a fragment approximation theory applicable to numerical simulations of Raman and Raman optical activity spectra for the amide I vibrations in polypeptides. For an alanine dipeptide and pentapeptide analogs, we carried out density functional theory calculations of polarizability, magnetic dipole-, and electric quadrupole-ROA tensors. Numerically simulated spectra using the fragment approximation are directly compared to density functional theory results. Furthermore, the simulated ROA spectra of alanine-based right-handed α -helix and polyproline II polypeptides are directly compared to the previously reported experimental results. The agreements were found to be excellent, which suggests that the fragment approximation method developed for the numerical simulation of ROA spectrum of polypeptide in solution is valid and useful.
AB - Vibrational optical activity (VOA) is an important property used to determine the absolute configuration of a chiral molecule in condensed phases. In particular, vibrational circular dichroism and Raman optical activity (ROA) are two representative VOA measurement techniques that have been extensively used to study structures and dynamics of biomolecules. Recently, the amide I vibrational circular dichroism of polypeptides was theoretically described by using fragment approximation methods, which are based on the assumption that amide I VOA can be described as a linear combination of those of constituent fragment peptide units. Here, we develop a fragment approximation theory applicable to numerical simulations of Raman and Raman optical activity spectra for the amide I vibrations in polypeptides. For an alanine dipeptide and pentapeptide analogs, we carried out density functional theory calculations of polarizability, magnetic dipole-, and electric quadrupole-ROA tensors. Numerically simulated spectra using the fragment approximation are directly compared to density functional theory results. Furthermore, the simulated ROA spectra of alanine-based right-handed α -helix and polyproline II polypeptides are directly compared to the previously reported experimental results. The agreements were found to be excellent, which suggests that the fragment approximation method developed for the numerical simulation of ROA spectrum of polypeptide in solution is valid and useful.
UR - http://www.scopus.com/inward/record.url?scp=58149524657&partnerID=8YFLogxK
U2 - 10.1063/1.3050294
DO - 10.1063/1.3050294
M3 - Article
C2 - 19140618
AN - SCOPUS:58149524657
SN - 0021-9606
VL - 130
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 1
M1 - 014503
ER -