Amino Acid-Modulated Chirality Evolution and Highly Enantioselective Chiral Nanogap-Enhanced Raman Scattering

Panangattukara Prabhakaran Praveen Kumar, Myung Ki Kim, Dong Kwon Lim

Research output: Contribution to journalArticlepeer-review

Abstract

Controlling the growth and selection of chiral inducers is crucial for the generation of chiral inorganic structures as observed in nature. Herein, the plasmonic chirality evolution from the Au cube seed under the presence of L- or D-amino acid as a chiral inducer is reported. The 432 Helicoid I structure is obtained using tryptophan (Trp), identical to the result with cysteine (Cys). The use of tyrosine (Tyr) produced a Helicoid IV-type structure. However, no distinctive chiral structures can be obtained using phenylalanine (Phe), valine (Val) and leucine (Leu), which indicates the critical role of amino acids in chirality evolution. In particular, Trp-Helicoid I nanoparticles (NPs) showed excellent enantioselective response toward L- or D-Cys in the colorimetric assay and Raman analysis in the presence of Trp. Furthermore, the chiroptical property with a nanogap of 23.78 ± 0.82 nm in the Helicoid I structure further expands its applications for highly sensitive and quantitative chiral analysis for small molecules such as R/S-epichlorohydrin (ECH), R/S-limonene (LM), and R/S-2-butanol (BuOH) using a non-polarized light source. The finding of amino acid-dependent chirality evolution can widen the current understanding of chirality evolution in nature, and the use of helicoid structures with nanogaps incorporated with surface-enhanced Raman scattering (SERS) can open a new avenue for chiral spectroscopic analysis.

Original languageEnglish
Article number2301503
JournalAdvanced Optical Materials
Volume11
Issue number23
DOIs
Publication statusPublished - 2023 Dec 4

Bibliographical note

Publisher Copyright:
© 2023 Wiley-VCH GmbH.

Keywords

  • Raman analysis
  • amino acids
  • enantioselective recognition
  • nanogap
  • plasmonic chirality

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Amino Acid-Modulated Chirality Evolution and Highly Enantioselective Chiral Nanogap-Enhanced Raman Scattering'. Together they form a unique fingerprint.

Cite this