TY - GEN
T1 - An adaptive reconfigurable active voltage doubler/rectifier for extended-range inductive power transmission
AU - Lee, Hyung Min
AU - Ghovanloo, Maysam
PY - 2012
Y1 - 2012
N2 - Modern implantable microelectronic devices (IMDs) require higher performance and power efficiency to enable more efficacious therapies, particularly in neuro-prostheses such as retinal and cochlear implants [1]. Inductive power transmission across the skin is a viable solution for providing sufficient power to such IMDs without imposing size and power constraints of implanted batteries [2]. On the down side, unlike batteries that provide a stable power source, unexpected variations in the coils' mutual coupling from misalignments can lead to wide variations in the received voltage across the secondary coil to the extent that the input voltage may not be sufficient to supply power to the IMD [3]. Hence, there is a need to improve the robustness of inductive power transmission without sacrificing efficiency to allow the IMDs to operate over a wider range of received input voltages. There are also other applications such as wireless sensors and radio-frequency identification (RFID), in which extending the range of loosely coupled inductive links are highly desired.
AB - Modern implantable microelectronic devices (IMDs) require higher performance and power efficiency to enable more efficacious therapies, particularly in neuro-prostheses such as retinal and cochlear implants [1]. Inductive power transmission across the skin is a viable solution for providing sufficient power to such IMDs without imposing size and power constraints of implanted batteries [2]. On the down side, unlike batteries that provide a stable power source, unexpected variations in the coils' mutual coupling from misalignments can lead to wide variations in the received voltage across the secondary coil to the extent that the input voltage may not be sufficient to supply power to the IMD [3]. Hence, there is a need to improve the robustness of inductive power transmission without sacrificing efficiency to allow the IMDs to operate over a wider range of received input voltages. There are also other applications such as wireless sensors and radio-frequency identification (RFID), in which extending the range of loosely coupled inductive links are highly desired.
UR - http://www.scopus.com/inward/record.url?scp=84860655891&partnerID=8YFLogxK
U2 - 10.1109/ISSCC.2012.6177017
DO - 10.1109/ISSCC.2012.6177017
M3 - Conference contribution
AN - SCOPUS:84860655891
SN - 9781467303736
T3 - Digest of Technical Papers - IEEE International Solid-State Circuits Conference
SP - 286
EP - 287
BT - 2012 IEEE International Solid-State Circuits Conference, ISSCC 2012 - Digest of Technical Papers
T2 - 59th International Solid-State Circuits Conference, ISSCC 2012
Y2 - 19 February 2012 through 23 February 2012
ER -