An antisense RNA that governs the expression kinetics of a multifunctional virulence gene

Eun Jin Lee, Eduardo A. Groisman

Research output: Contribution to journalArticlepeer-review

129 Citations (Scopus)


Genome-wide transcriptome analyses of several bacterial species have recently uncovered a hitherto unappreciated amount of antisense transcription. However, the physiological role, regulation and significance of such antisense transcripts are presently unclear. We now report the identification of a cis-encoded 1.2 kb long antisense RNA - termed AmgR - that is complementary to the mgtC portion of the mgtCBR polycistronic message from Salmonella enterica. The mgtCBR mRNA specifies the MgtC protein, which is necessary for survival within macrophages, virulence in mice and growth in low Mg2+; the Mg2+ transporter MgtB with no apparent role in virulence; and the membrane peptide MgtR mediating MgtC degradation. Expression of AmgR dimished both MgtC and MgtB protein levels in a process requiring RNase E but independent of RNase III, the RNA chaperone Hfq, and the regulatory peptide MgtR. Inactivation of the chromosomal amgR promoter increased MgtC and MgtB protein levels and enhanced Salmonella virulence. Surprisingly, AmgR transcription is governed by the regulatory protein PhoP, which also directs transcription of the sense mgtCBR mRNA. AmgR may function as a timing device that alters MgtC and MgtB levels after the onset of PhoP-inducing conditions.

Original languageEnglish
Pages (from-to)1020-1033
Number of pages14
JournalMolecular Microbiology
Issue number4
Publication statusPublished - 2010 May
Externally publishedYes

ASJC Scopus subject areas

  • Microbiology
  • Molecular Biology


Dive into the research topics of 'An antisense RNA that governs the expression kinetics of a multifunctional virulence gene'. Together they form a unique fingerprint.

Cite this