Abstract
Upgrading ethanol to higher order alcohols is desired but difficult using current biotechnological methods. In this study, we designed a completely artificial reaction pathway for upgrading ethanol to acetoin, 2,3-butanediol, and 2-butanol in a cell-free bio-system composed of ethanol dehydrogenase, formolase, 2,3-butanediol dehydrogenase, diol dehydratase, and NADH oxidase. Under optimized conditions, acetoin, 2,3-butanediol, and 2-butanol were produced at 88.78%, 88.28%, and 27.25% of the theoretical yield from 100 mM ethanol, respectively. These results demonstrate that this artificial synthetic pathway is an environmentally-friendly novel approach for upgrading bio-ethanol to acetoin, 2,3-butanediol, and 2-butanol.
Original language | English |
---|---|
Pages (from-to) | 230-242 |
Number of pages | 13 |
Journal | Green Chemistry |
Volume | 20 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2018 |
Bibliographical note
Funding Information:This work was supported by the National Natural Science Foundation of China (no. 81673542), the New Century Excellent Talents Supporting Plan of the Provincial Education Department of Fujian Province of China (no. K8015056A), the Development Platform of Edible Fungi Industry in Fujian Province (no. K5114001A), and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2017R1A2B3011676, 2017R1A4A1014806, 2013 M3A6A8073184).
Publisher Copyright:
© 2018 The Royal Society of Chemistry.
ASJC Scopus subject areas
- Environmental Chemistry
- Pollution