An experimental study on the thermal performance of cellulose-graphene-based thermal interface materials

Daechan Jeon, Se Hyun Kim, Wonjoon Choi, Chan Byon

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)

Abstract

In this study, an innovative thermal interface material (TIM) paper based on a composite of cellulose and graphene is investigated experimentally. Six types of commercially-available papers: a wool paper; an aqua satin; a merit paper; a new craft board; and two oriental traditional papers (Bulgyeong and Daerye) are used to fabricate the paper-graphene composites via bar coating and a slot die coating. The fabricated TIM papers are lightweight, flexible and robust against tensile strength. The in-plane and through-plane thermal conductivities of the TIM papers are measured using a laser-flash-method (LFM). The measured in-plane thermal conductivities are of the order of 5 W/m-K, whereas the through-plane thermal conductivities are of the order of 0.1 W/m-K. These results suggest that the addition of graphene significantly enhance the in-plane thermal conductivity of papers, while the through-plane thermal conductivities are not significantly improved. The mechanical properties of the TIM papers are also tested. This work provides a new possibility for development of next-generation thermal interface materials with good thermal and mechanical properties.

Original languageEnglish
Pages (from-to)944-951
Number of pages8
JournalInternational Journal of Heat and Mass Transfer
Volume132
DOIs
Publication statusPublished - 2019 Apr

Bibliographical note

Funding Information:
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning ( 2017R1A2A2A05000770 ).

Publisher Copyright:
© 2018 Elsevier Ltd

Keywords

  • Cellulose
  • Graphene
  • Paper
  • TIM

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanical Engineering
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'An experimental study on the thermal performance of cellulose-graphene-based thermal interface materials'. Together they form a unique fingerprint.

Cite this