Abstract
In this study, an innovative thermal interface material (TIM) paper based on a composite of cellulose and graphene is investigated experimentally. Six types of commercially-available papers: a wool paper; an aqua satin; a merit paper; a new craft board; and two oriental traditional papers (Bulgyeong and Daerye) are used to fabricate the paper-graphene composites via bar coating and a slot die coating. The fabricated TIM papers are lightweight, flexible and robust against tensile strength. The in-plane and through-plane thermal conductivities of the TIM papers are measured using a laser-flash-method (LFM). The measured in-plane thermal conductivities are of the order of 5 W/m-K, whereas the through-plane thermal conductivities are of the order of 0.1 W/m-K. These results suggest that the addition of graphene significantly enhance the in-plane thermal conductivity of papers, while the through-plane thermal conductivities are not significantly improved. The mechanical properties of the TIM papers are also tested. This work provides a new possibility for development of next-generation thermal interface materials with good thermal and mechanical properties.
Original language | English |
---|---|
Pages (from-to) | 944-951 |
Number of pages | 8 |
Journal | International Journal of Heat and Mass Transfer |
Volume | 132 |
DOIs | |
Publication status | Published - 2019 Apr |
Bibliographical note
Funding Information:This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning ( 2017R1A2A2A05000770 ).
Publisher Copyright:
© 2018 Elsevier Ltd
Keywords
- Cellulose
- Graphene
- Paper
- TIM
ASJC Scopus subject areas
- Condensed Matter Physics
- Mechanical Engineering
- Fluid Flow and Transfer Processes