An iterative scheme of flexibility-based component mode synthesis with higher-order residual modal compensation

In Seob Chung, Jin Gyun Kim, Soo Won Chae, K. C. Park

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

An Iterative Flexibility-based Component Mode Synthesis (IF-CMS) is presented for the model reduction of partitioned structural dynamic systems via localized Lagrange multipliers. A distinct IF-CMS feature is the inclusion of hierarchical residual flexibility at each iteration, resulting in considerably improved accuracy compared with the classical Craig–Bampton (CB) CMS method. The present IF-CMS method does not increase the number of substructural modes during the hierarchical iteration process. In particular, to alleviate ill-conditioning during the iteration steps, the proposed IF-CMS method adopts the so-called (qd, (Formula presented.), ub)-formulation by condensing Lagrange multipliers from the original F-CMS method. The performance of the proposed method is evaluated through numerical examples, which illustrates improved accuracy over existing CMS methods.

Original languageEnglish
Pages (from-to)3171-3190
Number of pages20
JournalInternational Journal for Numerical Methods in Engineering
Volume122
Issue number13
DOIs
Publication statusPublished - 2021 Jul 15

Bibliographical note

Funding Information:
Basic Science Research Programs through the National Research Foundation of Korea funded by the Ministry of Education and Ministry of Science, ICT, and Future Planning, NRF‐ 2018R1A1A1A05078730; NRF‐2020R1F1A1064012 Funding information

Funding Information:
This research was supported by the Basic Science Research Programs through the National Research Foundation of Korea funded by the Ministry of Education and Ministry of Science, ICT, and Future Planning (NRF‐2020R1F1A1064012 and NRF‐2018R1A1A1A05078730).

Publisher Copyright:
© 2021 John Wiley & Sons Ltd.

Keywords

  • component mode synthesis
  • iterative method
  • localized Lagrange multipliers
  • partitioned formulation
  • residual flexibility

ASJC Scopus subject areas

  • Numerical Analysis
  • Engineering(all)
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'An iterative scheme of flexibility-based component mode synthesis with higher-order residual modal compensation'. Together they form a unique fingerprint.

Cite this