Abstract
A modified structure for tiny ultrasonic linear motors has been developed, and various shaft materials have been tested in order to improve dynamic properties. The shaft material has a direct influence on efficiency, reliability, and quality of the motors and their dynamic properties. The shaft material is crucial to achieve high performance. Shafts of with various materials, such as a stainless steel, stainless steel coated with diamond like carbon (DLC), a Pyrex, and a graphite, can make it possible to improve dynamic properties of the motors over a wide range of tribological conditions. For the motor with a stainless steel shaft coated with DLC at 47 kHz, its velocity is 6.5 mm/s and its force is 110 mN. When the motor has a Pyrex shaft, a force of 140mN is reached at 52kHz. Accordingly, the maximum force produced by a motor with a graphite shaft is estimated as 97 mN. The velocity of this motor was 15 mm/s. We found that graphite has a fine surface and a directional texture which can help a moving element achieve linear motion. Finally, the use of a cap resulted in significantly improving stable operation. A motor with a graphite or a Pyrex shaft showed very stable operation and improved dynamic characteristics.
Original language | English |
---|---|
Pages (from-to) | 4782-4786 |
Number of pages | 5 |
Journal | Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers |
Volume | 45 |
Issue number | 5 B |
DOIs | |
Publication status | Published - 2006 May 25 |
Keywords
- Actuating force
- Linear motor
- Piezoelectric motor
- Radial mode
- Velocity
ASJC Scopus subject areas
- Engineering(all)
- Physics and Astronomy(all)