Angular Upsampling in Infant Diffusion MRI Using Neighborhood Matching in x-q Space

Geng Chen, Bin Dong, Yong Zhang, Weili Lin, Dinggang Shen, Pew Thian Yap

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)


Diffusion MRI requires sufficient coverage of the diffusion wavevector space, also known as the q-space, to adequately capture the pattern of water diffusion in various directions and scales. As a result, the acquisition time can be prohibitive for individuals who are unable to stay still in the scanner for an extensive period of time, such as infants. To address this problem, in this paper we harness non-local self-similar information in the x-q space of diffusion MRI data for q-space upsampling. Specifically, we first perform neighborhood matching to establish the relationships of signals in x-q space. The signal relationships are then used to regularize an ill-posed inverse problem related to the estimation of high angular resolution diffusion MRI data from its low-resolution counterpart. Our framework allows information from curved white matter structures to be used for effective regularization of the otherwise ill-posed problem. Extensive evaluations using synthetic and infant diffusion MRI data demonstrate the effectiveness of our method. Compared with the widely adopted interpolation methods using spherical radial basis functions and spherical harmonics, our method is able to produce high angular resolution diffusion MRI data with greater quality, both qualitatively and quantitatively.

Original languageEnglish
Article number57
JournalFrontiers in Neuroinformatics
Publication statusPublished - 2018 Sept 7

Bibliographical note

Funding Information:
This work was supported in part by NIH grants (NS093842, EB022880, EB006733, EB009634, AG041721, MH100217, and AA012388) and a NSFC grant (11671022).

Publisher Copyright:
© 2018 Chen, Dong, Zhang, Lin, Shen and Yap.


  • Diffusion MRI
  • Neighborhood matching
  • Non-local means
  • Regularization
  • Upsampling

ASJC Scopus subject areas

  • Neuroscience (miscellaneous)
  • Biomedical Engineering
  • Computer Science Applications


Dive into the research topics of 'Angular Upsampling in Infant Diffusion MRI Using Neighborhood Matching in x-q Space'. Together they form a unique fingerprint.

Cite this