TY - JOUR
T1 - Apoptosis in human hepatoma cell lines by chemotherapeutic drugs via Fas-dependent and Fas-independent pathways
AU - Jiang, Shunai
AU - Song, Moon Jung
AU - Shin, Eui Cheol
AU - Lee, Mi Ock
AU - Kim, Se Jong
AU - Park, Jeon Han
PY - 1999
Y1 - 1999
N2 - Many chemotherapeutic drugs have been found to exert their mode of action via induction of apoptosis in cancer cells. The mechanisms involved in this process are not clear. Recent studies have shown that the Fas/Fas ligand (FasL) system is a key factor controlling apoptotic cell death. In the present study, the involvement of Fas in chemotherapeutic drug-induced apoptosis in hepatoma cell lines was investigated. Five different human hepatoma cell lines, Hep G2, Hep G2.2.15, Hep 3B, SK-Hep-1, and PLC/PRF/5, were used. It was found that they expressed different levels of Fas. However, all five cell lines were susceptible to apoptosis when treated with chemotherapeutic drugs such as 5-fluorouracil (5-FU) or cisplatin. In Hep G2 that constitutively expressed Fas, 5-FU or cisplatin treatment caused an increase in the expression of Fas before the formation of oligonucleosomal DNA fragments, a typical feature of apoptosis. However, in Hep 3B, where Fas is undetectable, apoptosis could also be induced by 5-FU or cisplatin without induction of Fas. The agonistic anti-Fas antibody (CH-11) was capable of inducing apoptosis by itself and promoted drug-induced apoptosis in Hep G2 but not in Hep 3B. The antagonistic anti-Fas antibody (ZB4) inhibited drug- induced apoptosis in Hep G2. Our results suggest that apoptosis can be induced in hepatoma cell lines via both Fas-dependent and Fas-independent pathways.
AB - Many chemotherapeutic drugs have been found to exert their mode of action via induction of apoptosis in cancer cells. The mechanisms involved in this process are not clear. Recent studies have shown that the Fas/Fas ligand (FasL) system is a key factor controlling apoptotic cell death. In the present study, the involvement of Fas in chemotherapeutic drug-induced apoptosis in hepatoma cell lines was investigated. Five different human hepatoma cell lines, Hep G2, Hep G2.2.15, Hep 3B, SK-Hep-1, and PLC/PRF/5, were used. It was found that they expressed different levels of Fas. However, all five cell lines were susceptible to apoptosis when treated with chemotherapeutic drugs such as 5-fluorouracil (5-FU) or cisplatin. In Hep G2 that constitutively expressed Fas, 5-FU or cisplatin treatment caused an increase in the expression of Fas before the formation of oligonucleosomal DNA fragments, a typical feature of apoptosis. However, in Hep 3B, where Fas is undetectable, apoptosis could also be induced by 5-FU or cisplatin without induction of Fas. The agonistic anti-Fas antibody (CH-11) was capable of inducing apoptosis by itself and promoted drug-induced apoptosis in Hep G2 but not in Hep 3B. The antagonistic anti-Fas antibody (ZB4) inhibited drug- induced apoptosis in Hep G2. Our results suggest that apoptosis can be induced in hepatoma cell lines via both Fas-dependent and Fas-independent pathways.
UR - http://www.scopus.com/inward/record.url?scp=20644464759&partnerID=8YFLogxK
U2 - 10.1002/hep.510290102
DO - 10.1002/hep.510290102
M3 - Article
C2 - 9862856
AN - SCOPUS:20644464759
SN - 0270-9139
VL - 29
SP - 101
EP - 110
JO - Hepatology
JF - Hepatology
IS - 1
ER -