Arsenene-mediated multiple independently targeted reactive oxygen species burst for cancer therapy

Na Kong, Hanjie Zhang, Chan Feng, Chuang Liu, Yufen Xiao, Xingcai Zhang, Lin Mei, Jong Seung Kim, Wei Tao, Xiaoyuan Ji

Research output: Contribution to journalArticlepeer-review

120 Citations (Scopus)


The modulation of intracellular reactive oxygen species (ROS) levels is crucial for cellular homeostasis and determination of cellular fate. A sublethal level of ROS sustains cell proliferation, differentiation and promotes tumor metastasis, while a drastic ROS burst directly induces apoptosis. Herein, surface-oxidized arsenene nanosheets (As/AsxOy NSs) with type II heterojunction are fabricated with efficient ·O2 and 1O2 production and glutathione consumption through prolonging the lifetime of photo-excited electron-hole pairs. Moreover, the portion of AsxOy with oxygen vacancies not only catalyzes a Fenton-like reaction, generating ·OH and O2 from H2O2, but also inactivates main anti-oxidants to cut off the “retreat routes” of ROS. After polydopamine (PDA) and cancer cell membrane (M) coating, the engineered As/AsxOy@PDA@M NSs serve as an intelligent theranostic platform with active tumor targeting and long-term blood circulation. Given its narrow-band-gap-enabled in vivo fluorescence imaging properties, As/AsxOy@PDA@M NSs could be applied as an imaging-guided non-invasive and real-time nanomedicine for cancer therapy.

Original languageEnglish
Article number4777
JournalNature communications
Issue number1
Publication statusPublished - 2021 Dec 1

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)


Dive into the research topics of 'Arsenene-mediated multiple independently targeted reactive oxygen species burst for cancer therapy'. Together they form a unique fingerprint.

Cite this