Abstract
In this study, two host materials, pCzBzbCz and pCzPybCz, are synthesized to achieve a high efficiency and long lifetime of blue thermally activated delayed fluorescence organic light-emitting diodes (TADF-OLEDs). The molecular design strategy involves the introduction of a pyridine group into the core structure of pCzPybCz as an electron-withdrawing unit, and an electron-donating phenyl group into the structure of pCzBzbCz. These host materials demonstrate good thermal stability and high triplet energy (T1=3.07 eV for pCzBzbCz and 3.06 eV for pCzPybCz) for the fabrication of blue TADF-OLEDs. In particular, pCzPybCz-based OLED devices demonstrate an external quantum efficiency (EQE) of 22.7 % and an operational lifetime of 24 h (LT90, time to attain 90 % of initial luminance) at an initial luminance of 1000 cd m−2. This superior lifetime could be explained by the C−N bond dissociation energy (BDE) in the host molecular structure. Furthermore, a mixed-host system using the electron-deficient 2,4-bis(dibenzo[b,d]furan-2-yl)-6-phenyl-1,3,5-triazine (DDBFT) is proposed to inhibit the formation of the anion state of our host materials. In short, the device operational lifetime is further improved by applying DDBFT. The carbazole-based asymmetric host molecule containing a pyridine core realizes a high-efficiency blue TADF-OLED showing a positive effect on the operating lifetime, and can provide useful strategies for designing new host materials.
Original language | English |
---|---|
Pages (from-to) | 16383-16391 |
Number of pages | 9 |
Journal | Chemistry - A European Journal |
Volume | 26 |
Issue number | 69 |
DOIs | |
Publication status | Published - 2020 Dec 9 |
Keywords
- bipolar host materials
- density functional calculations
- fluorescence
- high external quantum efficiency
- organic light-emitting diodes
- thermally activated delayed fluorescence
ASJC Scopus subject areas
- Chemistry(all)
- Catalysis
- Organic Chemistry