Automated Parcellation of the Cortex Using Structural Connectome Harmonics

Hoyt Patrick Taylor IV, Zhengwang Wu, Ye Wu, Dinggang Shen, Han Zhang, Pew Thian Yap

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)


Meaningful division of the human cortex into distinct regions is a longstanding goal in neuroscience. Many of the most widely cited parcellations utilize anatomical priors or depend on functional magnetic resonance imaging (MRI) data while there exists a relative dearth of parcellations that use only structural data based on diffusion MRI. In light of this, and the fact that structural connectivity represents the underlying substrates of functional connectivity, we employ a novel high-resolution, vertex-level graph model of the whole-brain structural connectome and show that the harmonic modes of this graph can be used to achieve parcellations that qualitatively agree with the widely accepted atlases in the literature. Further, we detail a multi-layer formulation of the structural connectome graph and demonstrate that hierarchical clustering of its harmonic modes yields subject-specific parcellations at varying resolutions with ensured and tunable group-level correspondence.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
EditorsDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
PublisherSpringer Science and Business Media Deutschland GmbH
Number of pages9
ISBN (Print)9783030322472
Publication statusPublished - 2019
Externally publishedYes
Event22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duration: 2019 Oct 132019 Oct 17

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11766 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


Conference22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019

ASJC Scopus subject areas

  • Computer Science(all)
  • Theoretical Computer Science


Dive into the research topics of 'Automated Parcellation of the Cortex Using Structural Connectome Harmonics'. Together they form a unique fingerprint.

Cite this