Automatic Fetal Brain Extraction Using Multi-stage U-Net with Deep Supervision

Jingjiao Lou, Dengwang Li, Toan Duc Bui, Fenqiang Zhao, Liang Sun, Gang Li, Dinggang Shen

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    19 Citations (Scopus)

    Abstract

    Fetal brain extraction is one of the most essential steps for prenatal brain MRI reconstruction and analysis. However, due to the fetal movement within the womb, it is a challenging task to extract fetal brains from sparsely-acquired imaging stacks typically with motion artifacts. To address this problem, we propose an automatic brain extraction method for fetal magnetic resonance imaging (MRI) using multi-stage 2D U-Net with deep supervision (DS U-net). Specifically, we initially employ a coarse segmentation derived from DS U-net to define a 3D bounding box for localizing the position of the brain. The DS U-net is trained with deep supervision loss to acquire more powerful discrimination capability. Then, another DS U-net focuses on the extracted region to produce finer segmentation. The final segmentation results are obtained by performing refined segmentation. We validate the proposed method on 80 stacks of training images and 43 testing stacks. The experimental results demonstrate the precision and robustness of our method with the average Dice coefficient of 91.69%, outperforming the existing methods.

    Original languageEnglish
    Title of host publicationMachine Learning in Medical Imaging - 10th International Workshop, MLMI 2019, Held in Conjunction with MICCAI 2019, Proceedings
    EditorsHeung-Il Suk, Mingxia Liu, Chunfeng Lian, Pingkun Yan
    PublisherSpringer
    Pages592-600
    Number of pages9
    ISBN (Print)9783030326913
    DOIs
    Publication statusPublished - 2019
    Event10th International Workshop on Machine Learning in Medical Imaging, MLMI 2019 held in conjunction with the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
    Duration: 2019 Oct 132019 Oct 13

    Publication series

    NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    Volume11861 LNCS
    ISSN (Print)0302-9743
    ISSN (Electronic)1611-3349

    Conference

    Conference10th International Workshop on Machine Learning in Medical Imaging, MLMI 2019 held in conjunction with the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
    Country/TerritoryChina
    CityShenzhen
    Period19/10/1319/10/13

    Bibliographical note

    Publisher Copyright:
    © 2019, Springer Nature Switzerland AG.

    Keywords

    • Brain extraction
    • Convolutional neural network
    • Fetal MRI

    ASJC Scopus subject areas

    • Theoretical Computer Science
    • General Computer Science

    Fingerprint

    Dive into the research topics of 'Automatic Fetal Brain Extraction Using Multi-stage U-Net with Deep Supervision'. Together they form a unique fingerprint.

    Cite this