Automatic Fetal Brain Extraction Using Multi-stage U-Net with Deep Supervision

Jingjiao Lou, Dengwang Li, Toan Duc Bui, Fenqiang Zhao, Liang Sun, Gang Li, Dinggang Shen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

18 Citations (Scopus)

Abstract

Fetal brain extraction is one of the most essential steps for prenatal brain MRI reconstruction and analysis. However, due to the fetal movement within the womb, it is a challenging task to extract fetal brains from sparsely-acquired imaging stacks typically with motion artifacts. To address this problem, we propose an automatic brain extraction method for fetal magnetic resonance imaging (MRI) using multi-stage 2D U-Net with deep supervision (DS U-net). Specifically, we initially employ a coarse segmentation derived from DS U-net to define a 3D bounding box for localizing the position of the brain. The DS U-net is trained with deep supervision loss to acquire more powerful discrimination capability. Then, another DS U-net focuses on the extracted region to produce finer segmentation. The final segmentation results are obtained by performing refined segmentation. We validate the proposed method on 80 stacks of training images and 43 testing stacks. The experimental results demonstrate the precision and robustness of our method with the average Dice coefficient of 91.69%, outperforming the existing methods.

Original languageEnglish
Title of host publicationMachine Learning in Medical Imaging - 10th International Workshop, MLMI 2019, Held in Conjunction with MICCAI 2019, Proceedings
EditorsHeung-Il Suk, Mingxia Liu, Chunfeng Lian, Pingkun Yan
PublisherSpringer
Pages592-600
Number of pages9
ISBN (Print)9783030326913
DOIs
Publication statusPublished - 2019
Event10th International Workshop on Machine Learning in Medical Imaging, MLMI 2019 held in conjunction with the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duration: 2019 Oct 132019 Oct 13

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11861 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference10th International Workshop on Machine Learning in Medical Imaging, MLMI 2019 held in conjunction with the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
Country/TerritoryChina
CityShenzhen
Period19/10/1319/10/13

Bibliographical note

Publisher Copyright:
© 2019, Springer Nature Switzerland AG.

Keywords

  • Brain extraction
  • Convolutional neural network
  • Fetal MRI

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Automatic Fetal Brain Extraction Using Multi-stage U-Net with Deep Supervision'. Together they form a unique fingerprint.

Cite this