Abstract
Landmark localization is an important step in quantifying craniomaxillofacial (CMF) deformities and designing treatment plans of reconstructive surgery. However, due to the severity of deformities and defects (partially missing anatomy), it is difficult to automatically and accurately localize a large set of landmarks simultaneously. In this work, we propose two cascaded networks for digitizing 60 anatomical CMF landmarks in cone-beam computed tomography (CBCT) images. The first network is a U-Net that outputs heatmaps for landmark locations and landmark features extracted with a local attention mechanism. The second network is a graph convolution network that takes the features extracted by the first network as input and determines whether each landmark exists via binary classification. We evaluated our approach on 50 sets of CBCT scans of patients with CMF deformities and compared them with state-of-the-art methods. The results indicate that our approach can achieve an average detection error of 1.47 mm with a false positive rate of 19%, outperforming related methods.
Original language | English |
---|---|
Title of host publication | Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings |
Editors | Anne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 817-826 |
Number of pages | 10 |
ISBN (Print) | 9783030597184 |
DOIs | |
Publication status | Published - 2020 |
Event | 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 - Lima, Peru Duration: 2020 Oct 4 → 2020 Oct 8 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 12264 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 |
---|---|
Country/Territory | Peru |
City | Lima |
Period | 20/10/4 → 20/10/8 |
Bibliographical note
Publisher Copyright:© 2020, Springer Nature Switzerland AG.
Keywords
- Craniomaxillofacial (CMF) surgery
- Deep learning
- GCN
- Landmark localization
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science