TY - JOUR
T1 - Aviation, melting sea-ice and polar bears
AU - Sonne, Christian
AU - Alstrup, Aage K.O.
AU - Dietz, Rune
AU - Ok, Yong Sik
AU - Ciesielski, Tomasz Maciej
AU - Jenssen, Bjørn Munro
PY - 2019/12
Y1 - 2019/12
N2 - On 11 May 2019, the Mauna Loa, Hawaii, Earth System Research Laboratory reported the highest CO2 concentration in human meteorological history. Continuing CO2 rise will devastate ecosystems, and ice dependent species like polar bears ultimately will disappear. Commercial aviation is presently a relatively small CO2 contributor, but this CO2 intensive mode of transportation is projected to increase greatly. Scientists and conservationists are often among the most frequent of flyers, despite their recognition that emissions must be reduced. Here we illustrate the carbon footprint of air travel in terms of its impact on the sea ice habitat necessary for polar bear persistence, and suggest our colleagues reduce their air travel where-ever possible. Each metric ton of CO2 emitted melts ~3 m2 of arctic summer sea ice, and current air travel melts over 5000 m2 each year. Each scientist making the short flight from Copenhagen to Oslo to join an IUCN polar bear meeting will melt ~1 m2 of Arctic summer sea-ice. Annually hundreds of scientists and conservationists make frequent flights of much greater distances for AMAP, CAFF, IUCN, and other conservation related meetings. Much of this travel could be avoided with better planning and employing internet linkages for remote participation. When air travel, such as for necessary fieldwork, cannot be easily substituted by Web linkage, we all should search for routes and carriers allowing the lowest CO2 emissions. We encourage all of our colleagues to join ‘No Fly Climate Sci’ to show their commitment to CO2 reduction and learn more about doing so. As scientists, if we are serious about preserving polar bears and their Arctic sea ice habitat, we need to walk the talk and show an example for the rest of society by significantly reducing our air travel.
AB - On 11 May 2019, the Mauna Loa, Hawaii, Earth System Research Laboratory reported the highest CO2 concentration in human meteorological history. Continuing CO2 rise will devastate ecosystems, and ice dependent species like polar bears ultimately will disappear. Commercial aviation is presently a relatively small CO2 contributor, but this CO2 intensive mode of transportation is projected to increase greatly. Scientists and conservationists are often among the most frequent of flyers, despite their recognition that emissions must be reduced. Here we illustrate the carbon footprint of air travel in terms of its impact on the sea ice habitat necessary for polar bear persistence, and suggest our colleagues reduce their air travel where-ever possible. Each metric ton of CO2 emitted melts ~3 m2 of arctic summer sea ice, and current air travel melts over 5000 m2 each year. Each scientist making the short flight from Copenhagen to Oslo to join an IUCN polar bear meeting will melt ~1 m2 of Arctic summer sea-ice. Annually hundreds of scientists and conservationists make frequent flights of much greater distances for AMAP, CAFF, IUCN, and other conservation related meetings. Much of this travel could be avoided with better planning and employing internet linkages for remote participation. When air travel, such as for necessary fieldwork, cannot be easily substituted by Web linkage, we all should search for routes and carriers allowing the lowest CO2 emissions. We encourage all of our colleagues to join ‘No Fly Climate Sci’ to show their commitment to CO2 reduction and learn more about doing so. As scientists, if we are serious about preserving polar bears and their Arctic sea ice habitat, we need to walk the talk and show an example for the rest of society by significantly reducing our air travel.
KW - Carbon dioxide
KW - Climate
KW - Extinction
KW - Legislation
KW - Mercury
KW - Pollution
UR - http://www.scopus.com/inward/record.url?scp=85074161578&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85074161578&partnerID=8YFLogxK
U2 - 10.1016/j.envint.2019.105279
DO - 10.1016/j.envint.2019.105279
M3 - Letter
C2 - 31671313
AN - SCOPUS:85074161578
SN - 0160-4120
VL - 133
JO - Environmental International
JF - Environmental International
M1 - 105279
ER -