Abstract
Azimuthal distributions of charged particles and intermediate mass fragments emitted in Au+Au collisions at 600A MeV have been measured using the FOPI facility at GSI-Darmstadt. Data show a strong increase of the in-plane azimuthal anisotropy ratio with the charge of the detected fragment. Intermediate mass fragments are found to exhibit a strong momentum-space alignment with respect of the reaction plane. The experimental results are presented as a function of the polar centre-of-mass angle and over a broad range of impact parameters. They are compared to the predictions of the Isospin Quantum Molecular Dynamics model using three different parametrisations of the equation of state. We show that such highly accurate data provide stringent test for microscopic transport models and can potentially constrain separately the stiffness of the nuclear equation of state and the momentum dependence of the nuclear interaction.
Original language | English |
---|---|
Pages (from-to) | 522-542 |
Number of pages | 21 |
Journal | Nuclear Physics A |
Volume | 627 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1997 Dec 22 |
Externally published | Yes |
Bibliographical note
Funding Information:This work was supported in part by the French-German agreement between GSI and IN2P3/CEA and by the PROCOPE-Program of the DAAD.
Keywords
- Azimuthal distributions
- Incompressibility
- Momentum dependent interaction
- Nuclear equation of state
- Transport models
ASJC Scopus subject areas
- Nuclear and High Energy Physics