Background noise suppression for signal enhancement by novelty filtering

K. O. Hanseok, M. Arozullah

    Research output: Contribution to journalArticlepeer-review

    12 Citations (Scopus)

    Abstract

    The enhancement of weak signals in the presence of background and channel noise is necessary to design a robust automatic signal detection and recognition system. The autoassociative property of neural networks can be used to map the identifying characteristics of input source waveforms or their spectra. This paper is directed at the exploitation of such neural network properties for novelty filtering that improves the detection probability of weak signals by learning and subsequent subtraction of noise background from the input waveform. A neural-network-based preprocessor that learns to selectively filter out the background noise without significantly affecting the signal will be highly useful in solving practical signal enhancement problems. An analytical basis is established for the operation of neural-network-based novelty filters that enhance the signal detectability in the presence of noise background and channel noise.

    Original languageEnglish
    Pages (from-to)102-113
    Number of pages12
    JournalIEEE Transactions on Aerospace and Electronic Systems
    Volume36
    Issue number1
    DOIs
    Publication statusPublished - 2000

    ASJC Scopus subject areas

    • Aerospace Engineering
    • Electrical and Electronic Engineering

    Fingerprint

    Dive into the research topics of 'Background noise suppression for signal enhancement by novelty filtering'. Together they form a unique fingerprint.

    Cite this