Abstract
Food packaging is one of the most important parts of the food industry, and polyethylene-based polymers have been widely used as food packaging films. In this study, corona-treated polyethylene terephthalate (PET) films were used to increase adhesion to the barrier coating solution for multilayered film formation and various concentrations of montmorillonite (MMT; 0, 1, 3, and 5 wt.%) were used to improve the barrier properties of PET films for food packaging after different treatments of MMT including ultrasonication with bath or probe and 100-W or 300-W microwave to evenly disperse MMT. Among them, a 300-W microwave treatment was most effective for size reduction of MMT particles. Even though 5 wt.% MMT was used to coat PET films with polyacrylic acid (PAA), good transmittance in the visible region (500 nm) was obtained, with a value similar to that of the neat PET film. The dispersion of MMT and binding of PAA/MMT nanocomposites were confirmed by field-emission scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy analyses. The water vapor and oxygen barrier properties of PET films were enhanced by PAA coating. Moreover, the oxygen permeability of PET films decreased via coating by PAA blended with 1 and 3 wt.% MMT. Based on these results, the PET film coated with PAA/MMT nanocomposites could be applied as food packaging films that require high gas barrier properties for oxygen-sensitive food.
Original language | English |
---|---|
Pages (from-to) | 141-150 |
Number of pages | 10 |
Journal | Packaging Technology and Science |
Volume | 34 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2021 Mar |
Bibliographical note
Funding Information:This research was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through High Value‐added Food Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (318089032HD030) and by both School of Life Sciences and Biotechnology for BK21PLUS and Institute of Biomedical Science & Food Safety, Korea University.
Publisher Copyright:
© 2020 John Wiley & Sons, Ltd.
Keywords
- montmorillonite (MMT)
- nanocomposite
- oxygen barrier
- polyacrylic acid (PAA)
- polyethylene terephthalate (PET)
ASJC Scopus subject areas
- General Chemistry
- General Materials Science
- Mechanical Engineering