Abstract
(E)-3,4-Dihydroxybenzylideneacetone (compound 1) inhibited receptor activator of NF-κB ligand-induced osteoclastogenesis of C57BL/6 bone marrow monocyte/macrophages with IC50 of 7.8 μM (IC50 of alendronate, 3.7 μM) while stimulating the differentiation of MC3T3-E1 osteoblastic cells, accompanied by the induction of Runt-related transcription factor 2, alkaline phosphatase, and osteocalcin. (E)-4-(3-Hydroxy-4-methoxyphenyl)-3-buten-2-one (compound 2c) showed a dramatically increased osteoclast-inhibitory potency with IC50 of 0.11 μM while sustaining osteoblast-stimulatory activity. (E)-4-(4-Hydroxy-3-methoxyphenyl)-3-buten-2-one (compound 2g) stimulated alkaline phosphatase production 2-fold at 50 μM without changing osteoclast-inhibitory activity, compared with compound 1. Oral administration of compounds 1, 2c, and 2g prevented ovariectomy-induced osteoporosis in ddY mice to a degree proportional to their osteoclastogenesis-inhibitory potencies. The administration of 1 (mg/kg)/d compound 2c ameliorated histomorphometry of osteoporotic bone to a degree comparable with 10 (mg/kg)/d alendronate. Conclusively, the in vitro capacity of a few benzylideneacetone derivatives to inhibit osteoclastogenesis supported by independent osteoblastogenesis activation was convincingly reflected in in vivo management of osteoporosis, suggesting a potential novel therapeutics for osteopenic diseases.
Original language | English |
---|---|
Pages (from-to) | 6063-6082 |
Number of pages | 20 |
Journal | Journal of Medicinal Chemistry |
Volume | 62 |
Issue number | 13 |
DOIs | |
Publication status | Published - 2019 Jun 19 |
Bibliographical note
Funding Information:The present research was supported by KUMC (Korea University Medical Center) Research and Business Foundation (Grant Q1611891), Korea University (Grant K1813041), and National Research Foundation of Korea (Grant 2017M3A9A8033561).
Publisher Copyright:
© 2019 American Chemical Society.
ASJC Scopus subject areas
- Molecular Medicine
- Drug Discovery