TY - JOUR
T1 - Bilateral teleoperation of groups of mobile robots with time-varying topology
AU - Franchi, Antonio
AU - Secchi, Cristian
AU - Son, Hyoung Il
AU - Bülthoff, Heinrich H.
AU - Giordano, Paolo Robuffo
N1 - Funding Information:
Manuscript received October 10, 2011; revised February 23, 2012; accepted April 17, 2012. Date of publication May 14, 2012; date of current version September 28, 2012. This paper was recommended for publication by Associate Editor E. Guglielmelli and Editor W. K. Chung upon evaluation of the reviewers comments. This work was supported in part by the World Class University program funded by the Ministry of Education, Science, and Technology through the National Research Foundation of Korea under Grant R31-10008.
PY - 2012
Y1 - 2012
N2 - In this paper, a novel decentralized control strategy for bilaterally teleoperating heterogeneous groups of mobile robots from different domains (aerial, ground, marine, and underwater) is proposed. By using a decentralized control architecture, the group of robots, which is treated as the slave side, is made able to navigate in a cluttered environment while avoiding obstacles, interrobot collisions, and following the human motion commands. Simultaneously, the human operator acting on the master side is provided with a suitable force feedback informative of the group response and of the interaction with the surrounding environment. Using passivity-based techniques, we allow the behavior of the group to be as flexible as possible with arbitrary split and join events (e.g., due to interrobot visibility/packet losses or specific task requirements) while guaranteeing the stability of the system. We provide a rigorous analysis of the system stability and steady-state characteristics and validate performance through human/hardware-in-the-loop simulations by considering a heterogeneous fleet of unmanned aerial vehicles (UAVs) and unmanned ground vehicles as a case study. Finally, we also provide an experimental validation with four quadrotor UAVs.
AB - In this paper, a novel decentralized control strategy for bilaterally teleoperating heterogeneous groups of mobile robots from different domains (aerial, ground, marine, and underwater) is proposed. By using a decentralized control architecture, the group of robots, which is treated as the slave side, is made able to navigate in a cluttered environment while avoiding obstacles, interrobot collisions, and following the human motion commands. Simultaneously, the human operator acting on the master side is provided with a suitable force feedback informative of the group response and of the interaction with the surrounding environment. Using passivity-based techniques, we allow the behavior of the group to be as flexible as possible with arbitrary split and join events (e.g., due to interrobot visibility/packet losses or specific task requirements) while guaranteeing the stability of the system. We provide a rigorous analysis of the system stability and steady-state characteristics and validate performance through human/hardware-in-the-loop simulations by considering a heterogeneous fleet of unmanned aerial vehicles (UAVs) and unmanned ground vehicles as a case study. Finally, we also provide an experimental validation with four quadrotor UAVs.
KW - Decentralized control
KW - distributed algorithms
KW - distributed robot systems
KW - haptics
KW - mobile agents
KW - multirobot systems
KW - networked robots
KW - passivity-based control
KW - teleoperation of mobile robots
KW - telerobotics
UR - http://www.scopus.com/inward/record.url?scp=84867199844&partnerID=8YFLogxK
U2 - 10.1109/TRO.2012.2196304
DO - 10.1109/TRO.2012.2196304
M3 - Article
AN - SCOPUS:84867199844
SN - 1552-3098
VL - 28
SP - 1019
EP - 1033
JO - IEEE Transactions on Robotics
JF - IEEE Transactions on Robotics
IS - 5
M1 - 6199993
ER -