Bimetallic MV2CuII3 (M = Mo, W) coordination complexes based on octacyanometalates: Structures and magnetic variations tuned by chelated tetradentate macrocyclic ligands

Hak Lim Jeong, Sin You Young, Sik Yoo Houng, Hee Yoon Jung, Il Kim Jae, Kwan Kon Eui, Seop Hong Chang

    Research output: Contribution to journalArticlepeer-review

    9 Citations (Scopus)

    Abstract

    Four octacyanometalate-based bimetallic Cu-M (M = Mo, W) assemblies coordinated by tetradentate macrocyclic ligands were prepared via self-assembly process in a stoichiometric ratio of [M(CN)8]3- and Cu(macrocycle)2+ and characterized in terms of structures and magnetic properties. The crystal structures are varied depending on the macrocycles used. The employment of cyclam with no pendant groups produced a one-dimensional chain (1) with a rope-ladder pattern, whereas macrocycles with side groups allowed for the formation of two-dimensional honeycomb-like architectures (2-4). From the crystal structures, the variations in apical Cu-Nax lengths and Cu-Nax-Cax angles on the bridging pathways are observed, which arises from the existence of side groups on macrocyclic ligands. The magnetic results reveal that all of the prepared compounds show ferromagnetic couplings between magnetic centers transmitted through CN bridges under the present structural parameters. Comparing the magnetic strength of the Cu-Mo (3d-4d; 2) and Cu-W (3d-5d; 3) complexes supports that 3d-5d magnetic coupling is stronger than 3d-4d because the 5d orbital is more diffuse than 4d. The magnetic analyses for 1-4 and related complexes tentatively suggest that, when the Cu-Nax distances are long enough, the axial Cu-Nax bond length in the bridging route may be one of the major structural parameters to determine the magnitude of the ferromagnetic exchange coupling.

    Original languageEnglish
    Pages (from-to)10578-10586
    Number of pages9
    JournalInorganic Chemistry
    Volume46
    Issue number25
    DOIs
    Publication statusPublished - 2007 Dec 10

    ASJC Scopus subject areas

    • Physical and Theoretical Chemistry
    • Inorganic Chemistry

    Fingerprint

    Dive into the research topics of 'Bimetallic MV2CuII3 (M = Mo, W) coordination complexes based on octacyanometalates: Structures and magnetic variations tuned by chelated tetradentate macrocyclic ligands'. Together they form a unique fingerprint.

    Cite this