TY - JOUR
T1 - Biodistribution and toxicity of spherical aluminum oxide nanoparticles
AU - Park, Eun Jung
AU - Lee, Gwang Hee
AU - Yoon, Cheolho
AU - Jeong, Uiseok
AU - Kim, Younghun
AU - Cho, Myung Haing
AU - Kim, Dong Wan
N1 - Publisher Copyright:
© 2016 John Wiley & Sons, Ltd.
PY - 2016/3/1
Y1 - 2016/3/1
N2 - With the rapid development of the nano-industry, concerns about their potential adverse health effects have been raised. Thus, ranking accurately their toxicity and prioritizing for in vivo testing through in vitro toxicity test is needed. In this study, we used three types of synthesized aluminum oxide nanoparticles (AlONPs): γ-aluminum oxide hydroxide nanoparticles (γ-AlOHNPs), γ- and α-AlONPs. All three AlONPs were spherical, and the surface area was the greatest for γ-AlONPs, followed by the α-AlONPs and γ-AlOHNPs. In mice, γ-AlOHNPs accumulated the most 24 h after a single oral dose. Additionally, the decreased number of white blood cells (WBC), the increased ratio of neutrophils and the enhanced secretion of interleukin (IL)-8 were observed in the blood of mice dosed with γ-AlOHNPs (10 mg kg-1). We also compared their toxicity using four different in vitro test methods using six cell lines, which were derived from their potential target organs, BEAS-2B (lung), Chang (liver), HACAT (skin), H9C2 (heart), T98G (brain) and HEK-293 (kidney). The results showed γ-AlOHNPs induced the greatest toxicity. Moreover, separation of particles was observed in a transmission electron microscope (TEM) image of cells treated with γ-AlOHNPs, but not γ-AlONPs or α-AlONPs. In conclusion, our results suggest that the accumulation and toxicity of AlONPs are stronger in γ-AlOHNPs compared with γ-AlONPs and α-AlONPs owing their low stability within biological system, and the presence of hydroxyl group may be an important factor in determining the distribution and toxicity of spherical AlONPs.
AB - With the rapid development of the nano-industry, concerns about their potential adverse health effects have been raised. Thus, ranking accurately their toxicity and prioritizing for in vivo testing through in vitro toxicity test is needed. In this study, we used three types of synthesized aluminum oxide nanoparticles (AlONPs): γ-aluminum oxide hydroxide nanoparticles (γ-AlOHNPs), γ- and α-AlONPs. All three AlONPs were spherical, and the surface area was the greatest for γ-AlONPs, followed by the α-AlONPs and γ-AlOHNPs. In mice, γ-AlOHNPs accumulated the most 24 h after a single oral dose. Additionally, the decreased number of white blood cells (WBC), the increased ratio of neutrophils and the enhanced secretion of interleukin (IL)-8 were observed in the blood of mice dosed with γ-AlOHNPs (10 mg kg-1). We also compared their toxicity using four different in vitro test methods using six cell lines, which were derived from their potential target organs, BEAS-2B (lung), Chang (liver), HACAT (skin), H9C2 (heart), T98G (brain) and HEK-293 (kidney). The results showed γ-AlOHNPs induced the greatest toxicity. Moreover, separation of particles was observed in a transmission electron microscope (TEM) image of cells treated with γ-AlOHNPs, but not γ-AlONPs or α-AlONPs. In conclusion, our results suggest that the accumulation and toxicity of AlONPs are stronger in γ-AlOHNPs compared with γ-AlONPs and α-AlONPs owing their low stability within biological system, and the presence of hydroxyl group may be an important factor in determining the distribution and toxicity of spherical AlONPs.
KW - Aluminum oxide hydroxide nanoparticles
KW - Aluminum oxide nanoparticles
KW - Distribution
KW - Toxicity
KW - Toxicity screening
UR - http://www.scopus.com/inward/record.url?scp=84955461721&partnerID=8YFLogxK
U2 - 10.1002/jat.3233
DO - 10.1002/jat.3233
M3 - Article
C2 - 26437923
AN - SCOPUS:84955461721
SN - 0260-437X
VL - 36
SP - 424
EP - 433
JO - Journal of Applied Toxicology
JF - Journal of Applied Toxicology
IS - 3
ER -